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Abstract
Using a recent result of G.Asser, an extention of Ackermann-Peter
hierarchy of unary primitive recursive functions to string-functions
is obtained. The resulting hierarchy classifies the string-functions
according to their lexicographical growth.

1 Introduction

Let N be the set of naturals i.e. N = {0,1,2,...}. Consider a fixed alphabet
A = {ay,a,,...,a,},7 > 2 and denote by A* the free monoid generated by A
under concatenation (with e the null string). The elements of A* are called
strings; if reffering to strings, 7 < ” denotes the lexicographical order induced
by a1 < a2 < ... < ar. Denote by Fnc (respectively Fnc,) the set of all
unary number-theoretical (respectively, string) functions. By I, Succ,Cpn, Pd
we denote the following number-theoretical functions:

I(z) = =z,
Suce(z) = z41,
Cn(z) = m,

Pd(z) = =z =1, wherez ~ y=maz{z —y,0},
for all z,m,y € N.

By I4, Succf‘, CA, 0,7, we denote the following string-functions:

*(w) = w,
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Succ(w) = wa;(1<i<r),
Ciw) = v,
o(e) = aj,0(wa;)=waiy; if 1 <i<r and o(wa,) = o(w)a;
m(e) = em(o(w)) =w,

for all w,u € A"

Furtheron one uses the primitive recursive bijections ¢ : A* — N,¢: N — 4*
given by

il

0,c(wai) =r-c(w)+¢,1< i <r,we A*
e,&(m + 1) = o(¢(m)),m € N.

c(e)
<(0)

To each f in Fnc one associates the string-function s(f) € Fnc,4 defined by
s(f)(w) = &(f(c(w))) and for each g in Fnc, one associates the number-
theoretical function n(g) defined by n(g)(z) = c(g(e(z))). It is easily seen
that for every string-function g, s(n(g)) = ¢ and for every number-theoretical
function f,n(s(f)) = f. For example, s(Succ) = o,n(I4) = I,s(Pd) = . A
mapping from Fnc” to Fnc is called an operator in Fne, and analogously for
Fnc4. We consider the following operators in Fne and Fncy :

sub(f,g9) = h <= f,g,h € Fnc, f(9(z)) = h(z);
diff(f,9) = h<= f,g,h € Fne,b(z) = f(2) = 9(2);
it:(f) = h<=>f,h€ Fnc,h(0)=z,h(y+1) = f(h(y));
suba(f,g) = h<= f,9,h € Fnca, f(g(w)) = h(w);
o—itau(f) = h< f,h€ Fnca,hle) =w,h(o(u)) = f(h(x)).
For every operator ¢ in Fne, s(p)(f) = s(¢(n(f))), for every f € Fnec; analo-

gously, for every operator 6 in Fnc4,n(6)(g) = n(6(s(g))), for every g € Fne.
For example, s(it;) = 0 — #t 4 c(z), (0 — 4 w) = $t5(w)-

2 Ackermann-Peter string-function

The primitive-recursive functions were introduced by Asser {1] and studied by
various authors (see [4], [6], [8]). In order to study the complexity of such func-
tions, we use as a measure of complexity the growth relatively to the lexicograph-
ical order. To this aim we use the string-version of the Ackermann-Peter unary
function defined by Weichrauch [8]. The function, denoted by A : A* — A%,
is given by means of the following three equations :

Ao(z) = o(z) (1
An+1 (6) = Ap (al ) (2)
Ans1(0(2)) = An(4Ant1(2)). )

The following technical results concern the monotonicity properties of the func-
tion A; they generalize the monotonicity properties of the number-theoretical
Ackermann-Peter function (see [4]).
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Lemma 1 For all naturals n and for all sirings z over A*, we have
An(z) >z

Proof. We proceed by induction on n.

For n = 0 we have Ay(z) = o(z) > z. We assume that 4,(z) > z and we
prove the inequality An41(2) > by induction on z.

For z = ¢, Any1(€e) = Ap(a1) > e. Suppose now that A,41(z) > 2. We use
(3) and the first induction hypothesis to get

Ant1(0(2)) = An(An+1(2)) > Any1(2).

Finally, by the second induction hypothesis, that is A,41(z) 2 o(z), we obtain
Anti(o(2)) > o(z). O

Lemma 2 For all naturals n and for all sirings ¢ over A*, we have:
An(z) < An(o(z)).
Proof. Forn =20,
Ao(z) = o(z) < o(o(2)) = Ao(o(2))-
Assume that A,(z) < An(o(2)). In view of (3) and lemma 1 we have
Ant1(0(2)) = An(An+1(2)) > Anya1()-

a

Corollary 1 For all naturels n and all strings z,y from A*, if z < y, then
An(z) < Aply).

Lemma 3 For all naturals n and for all sirings = over A*, we have
An(ﬁi) < An+1(3:).

Proof. We proceed by double induction on n and z.
For n = 0 we have

Ao(z) = o(z) < o(o(z)) = As(2).

Assume now that A,(z) < Ap4+1(z) and we prove that Ap4+1(z) < Aps2(z) by
induction on z.
For z = e, in view of (2) and the first induction hypothesis, we get

Ant1(e) = An(a1) < Any1(a1) = Anya(e).

In view of a new induction hypothesis, A,41(z) < An42(z), we deduce the
relations:

An+1(0(2)) = An(An41(2)) < An(4n42(2)) < An41(Ant2(2)) = Ansa(o(z))

(we have also used the first induction hypothesis, relation (3) and corollary 1).
a
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Corollary 2 For all naturals n and m, and for all sirings z in A*, if n < m,
then
Ap(z) < Ap(2).

Lemma 4 For all strings = of A* we have: Ay(z) = g2¢(5)+3(e).

Proof. We proceed by induction on z.
For z = ¢, in view of (2) we have

Az(e) = Ay(a1) = o(o(ay)) = 0°(e) = o?()F3(e).
Assuming that A;(z) = o2(=)1+3(¢), we prove that Az(o(z)) = g2(7EN+3(¢).
Indeed, using (3) and the equality ¢(o(z)) = ¢(z) + 1, we get:
Ag(a(:c)) — A;(Az(x)) - A1(0,2c(z)+3(e)) = 0.2c(:)+5(6) = o.2c(cr(::))+3(e).
d

Lemma 58 For all naturals k and n > 1, there ezists ¢ naturel i (which depends
upon k) such that
An(o5(2)) < Anpa(n*(2)),

Jor every string z in A* with ¢(z) > 1.

Proof. We first notice that for every string z with ¢(z) > 3k = 1, we have
oF(z) < Aa(n*+1(2)).
Indeed, by lemma 4 we have

A2(7l’k+1(.’b')) = 0,2c(1r"+l(z))+3(e) — a2(c(z)-‘-k'»1)+3(e) — U2c(z)'—2k+l(e)
> MBI (e) = oF(0%%)(e)) = oF(2).
Consequently, using corolary 1 and corollary 2,
An(0*(2)) < An(A2(7*1(2))) < An(Ant1(7*(2))) = Ansa(n¥(2)),
for all strings = with ¢(z) > 3k — 1. In conclusion, we can take : =3k - 1.
Lemma 6 For all naturals n and sirings z in A* we have
Anga(z) = A (1),

Proof. We proceed by induction on z.
For z = ¢, using (2) we obtain
Anii(e) = An(ar) = AL (@1).

o=)+1(4,) we prove the equality

Assuming that Ap4i(z) = A
Anii(o(z)) = AL (g)),
Indeed, using (3) we get:
ALEEH (g, = AL+ (g,) = A,(AXDT(a))) = An(An41(2)) = Ang1(o(z)).
O

The monotonicity properties of the string Ackermann-Peter function will be
freely used in what follows.
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3 A hierarchy of unary primitive recursive
string-functions

We are going to define an increasing sequence (Cy,)n o of string-function classes
whose union equals the class of the one-argument primitive recursive string-
functions.

Definition 1 We say that the function f : A* — A* is defined by limited
iteration at e (shortly, limited iteration) from the functions g : A* — A* and
h: A* — A* if it satisfies the following equations:

f(&) = &
fle(@) = 9(f(2)),
fl@) < h(a),

for every z in A*.

Definition 2 For a natural n we define C,, to be the smallest class of unary
primitive recursive string-functions which contains the functions A4y, A, and
is closed under composition, limited iteration and s(diff) (the string-function
operation corresponding to the arithmetical difference).

Lemma 7 For oll naturals n, the class C, contains the functions CA, I* 7 and
the functions [;(1 <i <), sg and 37 defined by:

li(w) = a,1<i<r,
e fw=e

sg(w) = {al fw#e

aw = {2 fure

for all w € A”.
Proof. It follows from the following equalities:

CA = s(diff (Ao, Ao)
L = Ai(e)1<i<r
I4 s(diff )(Ao, 1)
59 = s(diff)(lh, 1)
sg = s(diff )(1,39)
T o= s(diﬂ)(IA,il)

and from the definition 2. |

Theorem 1 For all naturals n,Cp, C Cpyi.
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Proof. We shall prove by induction on n that for all natural numbers n and
kv An € C'n+k:~

If n = 0, by definition 2, 49 € C,,, for every natural m. Assume that
Ay € Cpik, Yk € N. We shall prove that Ap+1 € Cryrs1,Vk € N.

Assertion: For every string z, Apt1(z) = f(o(z)), where

fle) = e
flo()) Aq(9(f(z))), and
g(z) = s(diff )(o(x),s9(z))-

The equalities will be proved by induction on the string z. If z = e, from the
definitions of the functions A, and s(diff ) we deduce:

flo(e)) = Aa(9(f(e))) = Anlg(e)) = An(s(diff )(o(e), s9(e)))
= Au(s(diff )(a1,€)) = An(a1) = Ansa(e).

Supposing now that A,41(z) = f(o(z)), we shall show that Ap4i(o(z)) =

f(@*(2)).
Indeed,

flo(a(2))) = An(9(f(0(2)))) = An(9(An+1(2)))
= An(s(diff (o (An+1(2)), 89(An41(2))))
= An(s(diff )(o(Ant1(2)), a1))
= An(&(diff (c(0(An+1(2))), c(a1))))
= An(€(diff (c(An1(2)) +1,1)))
An(e(c(An+1(2)))) = An(Anta(2))
= Apta(o(z))

Using now definition 2, lemma 7, the induction hypothesis and the relations

f(2) = Anp1(n(2)) < Ant1(2) £ Antrpa(z), 2 € A7,

we deduce that A, is in Cp 4441 being obtained from functions belonging to
Crn+k+1, using composition, limited iteration and s(diff). 0

Lemma 8 For all naturals n and all functions f in C,, there ezists a natural
k such that f(z) < AX(z), for every string z in A*.

Proof. We shall make use of the inductive definition of Cy,.
If f(z) = Ao(z) then

f(z) < Ao(Ao()) < An(An(2))

and we can take k = 2,
If f(z) = An(z), then
f(z) < An(An(2))
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and we can also take k = 2.
If f(z) < AE(z) and g(z) < A%(z), for all strings = in A* then
(fog)(z) = fle(z)) < AL(g(2)) < ALF(x)),
s(diff )(f,9)(=) < flz) < AL(=).
Finally, if f is obtained by limited iteration from ¢ and h, h(z) < A%(z), then
f(z) < h(z) < AX(2). a
Theorem 2 For every class Cp,n > 1, and every f in C,, there ezists a nat-

ural ¢ (depending upon f) such that f(z) < Ap41(z) for every siring z in A*
satisfying c(z) > i.

Proof. Assume that f is a function in Cp,n 2> 1. In view of lemma 8, we
can find a natural k£ > 2 (which depends upon f) such that, for every string
z, f(z) < AX(z). We shall show that the requested inequality holds for i = 3k.

From the monotonicity properties of Ackermann-Peter string-function, one
can deduce the following relations:

An(z) = AL (An(2)) < AF7H(An(0" 71 (2))) < AT (A (* 71 (2))),

for every string z with ¢(z) > 3k =~ 1.
Intermediate step: Apqq(z) = AR~ (Anp1(n*71(2))), for every string z with
c(x) > k.
We shall prove the equality by induction on z. If ¢(z) = k, then we have
AT Ana (7 (@) = AT Aana (70" (e))))
= AN (Ant1 (770 (e)))) = AN (Anta(ar))
= AR () = AEH (@) = AZOH(a)
= A,,+1(.’L')-

If the equality holds for z, we can prove that
Ant1(0(2)) = AL (Annr (757 (0(2)))).
Indeed,

AT Anpa (7 (0(2)))

A Y Ay (o(x* 7Y (2)))
= A7 (An(Antr (71 (2)))
= An(AS T Ansa (77 (2))))
An(Ant1(7) = Anta(o(z)),

and the intermediate step is proved.
Returning to the proof of the theorem, we can now write

f(z) < A3(2) < A7 (Ania (7571 (2))) = Ania (),

for all strings z with ¢(z) > 3k ~ 1 and taking ¢ = 3k = 1, the proof is finished.
O
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Theorem 3 The set | Joo, Cr coincides with the set of unary primitive recur-
sive siring-funciions.

Proof. We shall make use of the characterization of the set of unary primitive
recursive string-functions obtained in [5], namely as the smallest class of unary
string-functions which contains ¢ and is closed under the operations

sub,o — it 4 ., s(diff).
It is obvious that every function in {J;,Cn is primitive recursive. For the
converse inclusion, all that remains to be proved is reduced to the closure of
U;“;o C" tO [0 itA,e.
We shall show that if f € {Joo, C,, is obtained by pure iteration from g €

n=0

% o Cn, there exists a function & € | J3> , C,, such that f is obtained by limited

nz=0 n=0
iteration from g and h and, therefore, f is in {Jioy Cn.
Indeed, let f be obtained by pure iteration from g in Cpy,m > 0. We shall
prove, by induction on the string z that f is majorated by A,4;.
If z = e, we have f(e) = e < Anti(e).
Supposing that f(z) < Ap+1(z) and using the definition and the monotonic-
ity properties of Ackermann-Peter function, we get:

flo(z)) = g(f(2)) < An(f(2)) < An(An+1(2)) = An(o()).
d

Theorem 4 The function A : A* — A* defined by A(w) = Ayw)(w) is not
primitive recursive.

Proof. Assume, on the contrary, that A is primitive recursive. From theorem 3
we get a natural n such that A € C,,. By theorem 2, there exists a natural
such that A(z) < A,41(2) for every = with ¢(z) > i. Let z be a string satisfying
the condition ¢(z) = n + ¢ + 1. We arrive at a contradiction since

A(z) = Ac(r)(@) = Antita1(2) < Anta(2)

(see corollary 2). This completes the proof of the theorem. 0
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