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A b s t r a c t  

Using a recent result of G.Asser, an extention of Ackermann-Peter 
hierarchy of unary primitive recursive functions to string-functions 
is obtained. The resulting hierarchy classifies the string-functions 
according to their lexicographical growth. 

1 I n t r o d u c t i o n  

Let N be the set of naturals i.e. N = {0,1, 2, . . .}.  Consider a fixed alphabet 
A = {a l ,a2 , . . .  ,at}, r > 2 and denote by A* the free monoid generated by A 
under concatenation (with e the null string). The elements of A* are called 
strings; if reffering to strings, " <  " denotes the lexicographical order induced 
by al < a2 < . . .  < at. Denote by Fnc (respectively FneA) the set of all 
unary number-theoretical (respectively, string) functions. By I, Succ, C,n, Pd 
we denote the following number-theoretical functions: 

Z(x) = x, 

S u c c ( z )  = z + l ,  

C , , , ( z )  = m ,  

P d ( ~ )  = ~ --- 1,  w h e r e  x - y = ~ , ~ { ~  - y ,  0 } ,  

for all x ,m,y  • N. 

By I A, Succ A, C A, a,~r, we denote the following string-functions: 

IA(w) = w, 
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SuccA(w) = wai(1 < i < r), 

a(e) = a l ,a (wa i )  = wai+l if 1 _< i < r and a(war)  = a(w)al  

~(~) = e ,~(~(w))  = ~ ,  

for all w, u E A* 

F~rtheron one uses the primitive recursive bijections c : A* 
given by 

N ,  ~ : N , A* 

c(e) = o, c(wai)  = . .  ~(w) + i, t < i < . ,  ~ ~ A*, 

~(0) = e, ~(m + 1) = a('~(m)), m e N .  

To each f in Fnc one associates the string-function s(.f) e FnCA defined by 
~(f)(w) = e(f(c(w))) and for each g in F . c A  one associates the number- 
theore t i ca l  function n(g) defined by n(g)(x) = c(g(-d(x))). It is easily seen 
that for every string-function g, s(n(g))  = g and for every number-theoretical 
function f , n ( 8 ( f ) )  = f .  For example, s(Succ) = a , n ( I  A) = I , s ( P d )  = 7r. A 
mapping from Fnc n to Fnc is called an operator in Fnc, and analogously for 
FncA. We consider the following operators in Fnc and FncA : 

sub(f ,g)  = h ¢=~ f , g ,  h e Fnc, f (g (x ) )  = h(x); 

di f f ( f ,  g) = h ¢=~ f ,  g, h e Fnc, h(z)  = f ( x )  - g(z); 

i t , ( f )  = h ¢=~ f ,  h e Fnc, h(O) = z,  h(y + 1) = f (h(y) ) ;  

subA(f ,g)  = h ¢=~ f , g ,  h G FncA, f (g (w) )  = h(w); 

a - i tA ,~( f )  = h ¢=~ f , h  ~ FncA, h(e) = w, h(a(u))  = f (h(u) ) .  

For every operator ~, in F.~, . (~ ) ( f )  = , (~(n(f))) ,  for every f e F.~; analo- 
gously, for every operator 0 in FnCA, n(O)(g) = n(0(.(g))), for every g G Fnc. 
For example, s( it~) = a - itA,c(z), n(a -- itA,~) = it~(~). 

2 A c k e r m a n n - P e t e r  s t r i n g - f u n c t i o n  

The primitive-recursive functions were introduced by Asser [1] and studied by 
various authors (see [4], [6], [8]). In order to study the complexity of such func- 
tions, we use as a measure of complexity the growth relatively to the lexicograph- 
ical order. To this aim we use the string-version of the Ackermann-Peter unary 
function defined by Weichrauch [8]. The function, denoted by A : A* ~ A*, 
is given by means of the following three equations : 

A0(~) = ~(~) (1) 
A,+ l ( e )  = A , ( a l )  (2) 

An+l(a(x) )  = A , ( A , + I ( z ) ) .  (3) 

The following technical results concern the monotonicity properties of the func- 
tion A; they generalize the monotonicity properties of the number-theoretical 
Ackermann-Peter function (see [4]). 
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L e m m a  1 For all nafurals n and for all 8fring8 z over A*, we have 

An(x) > x. 

Proof. We proceed by induction on n. 
For n = 0 we  have  A0(x)  = ~ ( x )  > x. We assume that  A n ( x )  > x = d  we 

prove the  inequality An+l(x) > x by induct ion on z. 
For x = e, An+a(e) = An(aa) > e. Suppose now tha t  An+l(x) > x. We use 

(3) and the first induction hypothesis to get 

An+l(a(x)) = An(An+l(x)) > A,+x(x). 

Finally, by the second induction hypothesis,  that  is An+l(x) > a(x), we obtain 
A . + l ( ~ ( x ) )  > ~ (x ) .  [ ]  

L e m m a  2 For all na~uraI8 n and for all atrings z over A*, we have: 

An(x) < An(a(x)). 

Proof. For n = 0, 

Ao(x) = a(x) < a(a(x)) = Ao(a(x)). 

Assume tha t  An(x) < An(a(x)). In view of (3) and lemma 1 we have 

An+l(a(x)) = An(An+I(x)) > An+l(x). 

[] 

C o r o l l a r y  1 For all naturala n and all stringa x ,y  from A*, if x < Y, then 
A , ( x )  < A, (y) .  

L e m m a  3 For all natural8 n and for all 8fring8 x over A*, we have 

An(x) < An+l(X). 

Proof. We proceed by double induction on n and x. 
For n = 0 we have 

Ao(x) = a(x) < a(a(x)) = A,(x) .  

Assume now that  A, (x )  < An+I(X) and we prove that  An+l(X) < An+2(x) by 
induct ion on x. 

For x = e, in view of (2) and the first induction hypothesis,  we get 

An+l(e)  = An(a l )  < A,+l(al)  = An+2(e). 

In view of a new induction hypothesis,  A,~+l(x) < An+2(x), we deduce the 
relations: 

An+l(a(x)) = An(An+I(x)) < An(An+2(x)) < An+I(An+2(x)) = A,+2(a(x)) 

(we have also used the first induction hypothesis, relation (3) and corollary 1). 

[] 



228 

Corollary 2 For all natur~l~ n and  m ,  and for all strings z in A*, if  n < m ,  
~hen 

A , ( x )  < Am(x). 

L e m m a  4 For all strings x of A* we have: A2(x) = a2c(~)+3(e). 

Proof. We proceed by induction on x. 
For x = e, in view of (2) we have 

A2(e) = A1 (al) = a(a(al)) = a3(e) = a~c(e)+3(e). 

Assuming that  As(x) = a2C(=)+3(e), we prove that A2(a(x)) = a2C(a(z))+3(e). 
Indeed, using (3) and the equality c(a(x)) = c(x) + 1, we get: 

A2(a(x)) = AI(A2(x)) = Al(a2c(z)+~(e)) = a2c(x)+5(e) = a2c(~(x))+a(e). 

[] 

L e m m a  5 For all naturals k and n >_ 1, there exist~ a natural i (which depends 
upon k) such that 

A, (ak(x))  < A,+l(Trk(x)), 

for every string x in A* with c(x) > i. 

Proof. We first notice that  for every string x with c(x) > 3k - 1, we have 
ok(x) < A2(rk+l(x)). 

Indeed, by lemma 4 we have 

= = = 

> ) = = 

Consequently, using corolary 1 and corollary 2, 

A,,(a~(x)) < A,(A2(Trk+l(x))) < An(A,+l(Trk+l(x))) = A,+l(~ 'k(x)) ,  

for all strings x with c(x) > 3k - 1. In conclusion, we can take i = 3k "- 1. [] 

L e m m a  6 For all naturals n and strings x in A* we have 

An+I(X)  = A~,(~)+l(al). 

Proof. We proceed by induction on x. 
For x = e, using (2) we obtain 

An+l(e) = n , ( a , ) =  A~(e)+l(al). 

Assuming that  An+l(x) = A~(*)+l(al) we prove the equali ty 

A,+l(a(x))  = A~(O(z))+l(al). 

Indeed, using (3) we get: 

A~ a(~))+l (a l )  = A~ (~)+2 (al)  = A,(A~, (~)+1 (al)) = An(An+I (x)) = A , + l ( a ( x ) ) .  

[:] 

The monotonicity properties of the string Aekermann-Peter function will be 
freely used in what follows. 
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3 A h i erarchy  of  u n a r y  p r i m i t i v e  r e c u r s i v e  
s t r i n g - f u n c t i o n s  

We are going to define an increasing sequence (Cn),>o of string-function classes 
whose union equals the class of the one-argument primitive recursive string- 
functions. 

D e f i n i t i o n  1 We say that the function f : A* } A* is defined by limited 
iteration at e (shortly, limited iteration) from the functions g : A* ~ A* and 
h : A* } A* if it satisfies the following equations: 

y(e) = e, 
f(a(x)) = g(f(x)), 

f(x)  < h(x), 

for every z in A*. 

D e f i n i t i o n  2 For a natural n we define C. to be the smallest class of unary 
primitive recursive string-functions which contains the functions Ao, An and 
is closed under composition, limited iteration and s(dif f)  (the string-function 
operation corresponding to the arithmetical difference). 

L e m m a  7 For all naturals n, the class Ca contains the functions C A, I A, 7r and 
the functions li(1 < i < r), sg and -~g defined by: 

li(w) = ai, l < i < r ,  

sg(w) = { e if w = e 
al i f w # e  

~(w)  = I if w = e  al 
e i f ~ # e ,  

for all w E A*. 

Proof. It follows from the following equalities: 

C A = s(di f f ) (Ao,Ao)  

li = A ~ ( c ) , I  < i < r 

I a = s(dif f)(Ao,la) 

8"ff = 8(d i f f ) ( l l , I  A) 

sg = a(di f f ) ( l l , -~)  

7r = a(di f f ) ( I  A, 11) 

and from the definition 2. 

T h e o r e m  1 For all naturals n, C .  C_ C.+1. 

[] 
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Proof. We shall prove by induction on n that for all natural numbers n and 
k, An E Cn+k. 

If n = 0, by definition 2, A0 E C,,,, for every natural m. Assume that 
An E C,,+k, Vk E N. We shall prove that An+a E Cn+k+a,Vk E N. 

Assertion: For every string x, An+a (x) = f(a(x)) ,  where 

f(e) = e, 

f(o'(x)) = An(g(f(x))), and 

g(x) = ~(~i#)(~(x),,g(,)). 

The equalities will be proved by induction on the string z. H x = e, from the 
definitions of the functions An mad s(diff) we deduce: 

f (a(e))  = An(g(f(e))) = An(g(e)) = An(s(diff)(a(e), sg(e))) 

= An(s(diff)(al,e)) = A , (a l )  = An+l(e). 

Supposing now that An+l(x) = f(a(x)) ,  we shall show that An+a(a(x)) = 

f (~ (x ) ) .  
Indeed, 

f(a(a(x)))  = An(g(f(a(x)))) = An(g(An+l(x))) 

= An(s(diff)(a(An+l(X)), sg(An+l(x)))) 

= An(s(diff)(a(An+l(x)), an)) 

= A n ( ' e ( d i f ( c ( . ( a n + 1 ( z ) ) ) ,  c(a1))))  

= an(e(dig(c(An+,(x)) + 1,1))) 
= An(~ (c (An+l (x ) ) ) )  = An(An+I (x ) )  

= An+~(~(x ) ) .  

Using now definition 2, lemma 7, the induction hypothesis and the relations 

f (x )  = An+a(r(x)) _< An+l(x) <_ An+k+l(x), x E A*, 

we deduce that An+a is in Cn+k+l being obtained from functions belonging to 
Cn+~+a, using composition, limited iteration and s(diff). [] 

L e m m a  8 For all naturals n and all functions f in Cn, there exists a natural 
k such that f ( x )  < Akn(x), for every string x in A*. 

Proof. We shall make use of the inductive definition of Gn. 
If f ( x )  = Ao(x) then 

f (x )  < ao(Ao(x)) <_ An(an(x)) 

and we can take k = 2. 
If f ( x )  = An(a), then 

f ( x )  < An(An(x)) 
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and we can also take k = 2. 
U f (x )  < A~.(x) and g(x) < A~.(x), for all s t r ing  = in A* then 

( f  og)(x) = f(g(=)) < A~(g(=)) < A~+q(x)), 

s(dif f)(f ,g)(z) < f ( x )  < A~(x). 

Finally, if f is obtained by limited iteration from g and h, h(z) < A~(x), then 
f(w) < h(w) < Akn(x). [] 

T h e o r e m  2 For every class Cn, n > 1, and every f in C, ,  there ezists a nat- 
ural i (depending upon f )  such that f(=) < A,+I(x)  for every string x in A* 
satisfying c(z) > i. 

Proof. Assume that f is a function in On, n > 1. In view of lemma 8, we 
can find a natural k > 2 (which depends upon f )  such that, for every string 
x, f ( x )  <An(= ). We shall show that the requested inequality holds for i = 3k. 

From the monotonicity properties of Ackermann-Peter string-function, one 
can deduce the following relations: 

A~(z) = A~- I (A . (x ) )  <_ A~- l (A . (ak - l ( x ) ) )  < A~-l(A.+l(Trk-l(x))) ,  

for every string x with c(x) > 3k - 1. 
Intermediate step: A,~+I(x) = Akn-l(A.+l(Tr k-1 (z))), for every string x with 

c(=) > k. 
We shall prove the equality by induction on x. If c(x) = k, then we have 

A~-1(A.+l (rk - l (x ) ) )  = A~-l(A.+l(~rk-l(ac(=)(e)))) 

= A~n-l(An+l(Trk-l(ak(e)))) = Akn-l(An+l(al)) 
k- -1  2 = A n (An(a1)) = Akn+l(al) = A~(=)+l(al) 

= An+l(=). 

If the equality holds for x, we can prove that 

= A k - l r A  17rk-1 A.+,(a(x))  . ~,~+1~ (a(x)))). 

Indeed, 

Akn -1 (A,~+I (rr k-1 (a(x)))) 

and the intermediate step is proved. 

= A~-l(A.+l(a(Trk-l(x))))  

= Akn-l(A,,(An+l(Irk-l(x)))) 

= A.(A~-I(A.+I(~rk-I(x))))  

A . (A .+I(x ) )  = A.+l(a(x)) ,  

Returning to the proof of the theorem, we can now write 

f (x )  < A~(z) < Akn-l(An+l(rk-l(x))) = A.+I(x) ,  

for all strings x with c(x) > 3k - 1 and taking i = 3k "- 1, the proof is finished. 

D 
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Theorem 3 The set U.°°=o c,, coincides with the set of unary primitive recur- 
sire string-functions. 

Proof. We shall make use of the characterization of the set of unary primitive 
recursive string-functions obtained in [5], namely as the smallest class of unary 
string-functions which contains a and is closed under the operations 

sub, a - irA,e, s( dif f  ). 

It is obvious that every function in U.~__o c .  is primitive recursive. For the 
converse inclusion, all that remains to be proved is reduced to the closure of 

CO 
Un=o Cn to a - -  itA,e. 

We shall show that if f GUn°°__ 0 cn  is obtained by pure iteration from g e 
OO Oo  U,=0 Cn, there exists a function h e U,=o cn such that f is obtained by limited 

iteration from g and h and, therefore, f is in U,°°__ 0 c , .  
Indeed, let f be obtained by pure iteration from g in Cr., m > 0. We shall 

prove, by induction on the string z that f is majorated by A,+I. 
If x = e, we have f (e)  = e < A,+l(e). 
Supposing that f (x)  < A,+l(X) and using the definition and the monotonic- 

ity properties of Ackermann-Peter function, we get: 

f (a(x))  = g(f(x)) < A , ( f ( x ) )  < A,(An+I(x)) = An(a(x)). 

[] 

Theorem 4 The function "A : A* ~ A* defined by -A(w) = Ac(~)(w) i~ not 
primitive reeursive. 

Proof. Assume, on the contrary, that A is primitive recursive. From theorem 3 
we get a natural n such that A G Cn. By theorem 2, there exists a natural i 
such that A(x) < A,+I(x) for every x with c(x) >_ i. Let z be a string satisfying 
the condition c(z) = n + i + 1. We arrive at a contradiction since 

-A(x) = Ac(x)(x) = A,+i+l(x) < A,+l(x) 

(see corollary 2). This completes the proof of the theorem. [] 
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