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In this paper, we study the state complexities of two particular combinations of opera-

tions: catenation combined with union and catenation combined with intersection. We
show that the state complexity of the former combined operation is considerably less
than the mathematical composition of the state complexities of catenation and union,
while the state complexity of the latter one is equal to the mathematical composition of

the state complexities of catenation and intersection.

1. Introduction

State complexity is a type of descriptional complexity for regular languages based

on the deterministic finite automaton (DFA) model [22]. The state complexity of

an operation on regular languages is the number of states that are necessary and

sufficient in the worst case for the minimal, complete DFA that accepts the re-

sulting language of the operation [8]. Many results on the state complexities of

individual operations have been obtained, e.g. union, intersection, catenation, star,

etc [1, 2, 3, 4, 9, 11, 12, 15, 16, 18, 20, 22].

However, in practice, the operation to be performed is often a combination of

several individual operations in a certain order, rather than only one individual oper-

ation. The research on state complexity of combined operations started in 2005. Up

to now, a number of papers on this topic have been published [4, 5, 6, 7, 13, 14, 17, 19].

It has been shown that the state complexity of a combined operation is not simply

a mathematical composition of the state complexities of its component operations.

It appears that the state complexity of a combined operation in general is more
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difficult to obtain than that of an individual operation, especially the tight lower

bound of the operation. This is because the resulting languages of the worst case of

one operation may not be among the worst case input languages of the subsequent

operation.

The study on state complexity of individual operations has already greatly relied

on computer software to test and verify the results. One could say that, without

the use of computer software, there would be no results on the state complexity of

combined operations.

Although there is only a limited number of individual operations, the number

of combined operations is unlimited. It is impossible to study the state complexity

of all the combined operations. However, we consider that, besides the study of

estimation and approximation of state complexity of general combined operations

[6, 7], establishing the exact state complexity of some commonly used and basic

combined operations is helpful to reveal the mutual influence between the compo-

nent operations. For example, the state complexities of union and intersection on

regular languages are known to be the same [15, 20]. However, the state complexities

of (L1 ∪ L2)
∗ and (L1 ∩ L2)

∗ have been proved to be different [19].

In this paper, we study the state complexities of catenation combined with

union, i.e., (L(A)(L(B) ∪ L(C))), and catenation combined with intersection, i.e.,

(L(A)(L(B) ∩ L(C))), for DFAs A, B and C of sizes m,n, p ≥ 1, respectively.

Both of them are basic combined operations and are commonly used in practice.

For L(A)(L(B) ∪ L(C)), we show that its state complexity is (m− 1)(2n+p − 2n −
2p + 2) + 2n+p−2, for m,n, p ≥ 1 (except the situations when m ≥ 2 and n =

p = 1), which is much smaller than m2np − 2np−1, the mathematical composition

of the state complexities of union and catenation [15, 20]. On the other hand, for

L(A)(L(B) ∩ L(C)), we show that the mathematical composition of the individual

state complexities of this combined operation is m2np−2np−1, i.e., exactly equal to

the state complexity of the operation (also except the cases when m ≥ 2 and n =

p = 1). Note that the individual state complexity of union and that of intersection

are exactly the same. However, when they combined with catenation, the resulting

state complexities are so different.

In the next section, we introduce the basic definitions and notation used in the

paper. Then we prove our results on catenation combined with union and catenation

combined with intersection in Sections 3 and 4, respectively. We conclude the paper

in Section 5.

2. Preliminaries

A non-deterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, s, F ),

where Q is a finite set of states, s ∈ Q is the start state, and F ⊆ Q is the set

of final states, and δ : Q×Σ → 2Q is the transition function. If |δ(q, a)| ≤ 1 for any

q ∈ Q and a ∈ Σ, then this automaton is called a deterministic finite automaton

(DFA). A DFA is said to be complete if |δ(q, a)| = 1 for all q ∈ Q and a ∈ Σ. All
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the DFAs we mention in this paper are assumed to be complete. We extend δ to

Q×Σ∗ → Q in the usual way. Then the word w ∈ Σ∗ is accepted by the automaton

if δ(s, w) ∩ F ̸= ∅. Two states in a finite automaton A are said to be equivalent if

and only if for every word w ∈ Σ∗, if A is started in either state with w as input, it

either accepts in both cases or rejects in both cases. It is well-known that a language

which is accepted by an NFA can be accepted by a DFA, and such a language is said

to be regular. The language accepted by a DFA A is denoted by L(A). The reader

may refer to [10, 21] for more details about regular languages and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number of

states of the minimal complete DFA that accepts L. The state complexity of a class

S of regular languages, denoted by sc(S), is the supremum among all sc(L), L ∈ S.

The state complexity of an operation on regular languages is the state complexity

of the resulting languages from the operation as a function of the state complexity

of the operand languages. For example, we say that the state complexity of the

intersection of an m-state DFA language and an n-state DFA language is exactly

mn. This implies that the largest number of states of all the minimal complete

DFAs that accept the intersection of an m-state DFA language and an n-state

DFA language is mn, and such languages exist. Thus, in a certain sense, the state

complexity of an operation is a worst-case complexity.

3. Catenation combined with union

In this section, we consider the state complexity of L(A)(L(B) ∪ L(C)) for three

DFAs A,B,C of sizes m,n, p ≥ 1, respectively. We first obtain the following upper

bound (m − k)(2n+p − 2n − 2p + 2) + k2n+p−2 (Theorem 1), and then show that

this bound is tight for m,n, p ≥ 1, except the situations when m ≥ 2 and n = p = 1

(Theorems 2 and 4).

Theorem 1. For integers m,n, p ≥ 1, let A, B and C be three DFAs with m, n

and p states, respectively, where A has k final states. Then there exists a DFA of at

most (m−k)(2n+p−2n−2p+2)+k2n+p−2 states that accepts L(A)(L(B)∪L(C)).

Proof. Let A = (Q1,Σ, δ1, s1, F1) where |F1| = k, B = (Q2,Σ, δ2, s2, F2), and

C = (Q3,Σ, δ3, s3, F3). We construct D = (Q,Σ, δ, s, F ) such that

Q = {⟨q1, q2, q3⟩ | q1 ∈ Q1 − F1, q2 ∈ 2Q2 − {∅}, q3 ∈ 2Q3 − {∅}}
∪{⟨q1, ∅, ∅⟩ | q1 ∈ Q1 − F1}
∪{⟨q1, {s2} ∪ q2, {s3} ∪ q3⟩ | q1 ∈ F1, q2 ∈ 2Q2−{s2}, q3 ∈ 2Q3−{s3}},

s = ⟨s1, ∅, ∅⟩ if s1 ̸∈ F1, s = ⟨s1, {s2}, {s3}⟩ otherwise,
F = {⟨q1, q2, q3⟩ ∈ Q | q2 ∩ F2 ̸= ∅ or q3 ∩ F3 ̸= ∅},
δ(⟨q1, q2, q3⟩, a) = ⟨q′1, q′2, q′3⟩, for a ∈ Σ, where q′1 = δ1(q1, a) and,

for i ∈ {2, 3}, q′i = Si ∪ {si} if q′1 ∈ F1, q
′
i = Si otherwise,

where Si = ∪r∈qi{δi(r, a)}.
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Intuitively, Q is a set of triples such that the first component of each triple is a

state in Q1 and the second and the third components are subsets of Q2 and Q3,

respectively.

We notice that if the first component of a state is a non-final state of Q1, the

other two component are either both the empty set or both nonempty sets. This is

because the two components always change from the empty set to a non-empty set

at the same time. This is the reason to have the first and second terms of Q.

Also, we notice that if the first component of a state of D is a final state of A,

then the second component and the third component of the state must contain the

initial state of B and C, respectively. This is described by the third term of Q.

Clearly, the size of Q is (m− k)(2n+p − 2n − 2p + 2) + k2n+p−2. Moreover, one

can easily verify that L(D) = L(A)(L(B) ∪ L(C)).

In the following, we consider the conditions under which this bound is tight.

We know that a complete DFA of size 1 only accepts either ∅ or Σ∗. Thus, when

n = p = 1, L(A)(L(B) ∪ L(C)) = L(A)Σ∗ if either L(B) = Σ∗ or L(C) = Σ∗, and

L(A)(L(B) ∪ L(C)) = ∅ otherwise. Therefore, in such cases, the state complexity

of L(A)(L(B) ∪ L(C)) is m as shown in [20].

Now, we consider the case when n = 1 and p ≥ 2. Since L(B) ∪ L(C) = L(C)

when L(B) = ∅, it is clear that the state complexity of L(A)(L(B)∪L(C)) is equal

to that of L(A)L(C), m2p − k2p−1 given in [20], which coincides with the upper

bound obtained in Theorem 1. The situation is analogous to the case when n ≥ 2

and p = 1.

Next, we consider the case when m = 1 and n, p ≥ 2.

Theorem 2. Let A be a DFA of size 1 over a four-letter alphabet. Then for any

integers n, p ≥ 2, there exist DFAs B and C with n and p states, respectively, defined

over the same alphabet such that any DFA accepting L(A)(L(B) ∪ L(C)) needs at

least 2n+p−2 states.

Proof. We use a four-letter alphabet Σ = {a, b, c, d}, and let A be the DFA ac-

cepting Σ∗.

Let B = (Q2,Σ, δ2, 0, {n−1}), as shown in Figure 1, whereQ2 = {0, 1, . . . , n−1},
and the transitions are given as

• δ2(i, a) = i+ 1 mod n, for i ∈ {0, . . . , n− 1},
• δ2(i, x) = i for i ∈ Q2, where x ∈ {b, d},
• δ2(0, c) = 0, δ2(i, c) = i+ 1 mod n, for i ∈ {1, . . . , n− 1}.

Let C = (Q3,Σ, δ3, 0, {p − 1})be a DFA, as shown in Figure 1, where Q3 =

{0, 1, . . . , p− 1}, and the transitions are given as

• δ3(i, x) = i for i ∈ Q3, where x ∈ {a, c},
• δ3(i, b) = i+ 1 mod p, for i ∈ {0, . . . , p− 1},
• δ3(0, d) = 0, δ3(i, d) = i+ 1 mod p, for i ∈ {1, . . . , p− 1}.
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Fig. 1. The DFA B showing that the upper bound in Theorem 1 is reachable when m = 1 and
n, p ≥ 2

Fig. 2. The DFA C showing that the upper bound in Theorem 1 is reachable when m = 1 and
n, p ≥ 2

LetD = (Q, {a, b, c, d}, δ, ⟨0, {0}, {0}⟩, F ) be the DFA for accepting the language

L(A)(L(B)∪L(C)) constructed from those DFAs exactly as described in the proof

of Theorem 1, where

Q = {⟨0, {0} ∪ q2, {0} ∪ q3⟩ | q2 ∈ 2Q2−{0}, q3 ∈ 2Q3−{0}},
F = {⟨q1, q2, q3⟩ ∈ Q | n− 1 ∈ q2 or p− 1 ∈ q3}.

We omit the definition of the transitions.

Then we prove that the size of Q is minimal by showing that (I) any state in

Q can be reached from the initial state, and (II) no two different states in Q are

equivalent.

For (I), we first show that all the states ⟨0, q2, q3⟩ such that q3 = {0} are reach-

able by induction on the size of q2.

The basis clearly holds, since the initial state is the only state whose second

component is of size 1.

In the induction steps, we assume that all states ⟨0, q2, {0}⟩ such that |q2| < k

are reachable. Then we consider the states ⟨0, q2, {0}⟩ where |q2| = k. Let q2 =

{0, j2, . . . , jk} such that 0 < j2 < j3 < . . . < jk ≤ n− 1. Note that the states such

that j2 = 1 can be reached as follows

⟨0, {0, 1, j3, . . . , jk}, {0}⟩ = δ(⟨0, {0, j3 − 1, . . . , jk − 1}, {0}⟩, a),

where {0, j3 − 1, . . . , jk − 1} is of size k − 1. Then the states such that j2 > 1 can

be reached from these states as follows

⟨0, {0, j2, . . . , jk}, {0}⟩ = δ(⟨0, {0, 1, j3 − t, . . . , jk − t}, {0}⟩, ct), where t = j2 − 1.
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After this induction, all the states such that the third component is {0} have

been reached. Then it is clear that, from each of these states ⟨0, q2, {0}⟩, all the states
in Q such that the second component is q2 and the size of their third component

is larger than 1 can be reached by using the same induction steps but using the

transitions on letters b and d.

Next, we show that any two distinct states ⟨0, q2, q3⟩ and ⟨0, q′2, q′3⟩ in Q are

not equivalent. We only consider the situations where q2 ̸= q′2, since the other

case can be shown analogously. Without loss of generality, there exists a state r

such that r ∈ q2 and r ̸∈ q′2. It is clear that r ̸= 0. Let w = dp−1cn−1−r. Then

δ(⟨0, q2, q3⟩, w) ∈ F but δ(⟨0, q′2, q′3⟩, w) ̸∈ F .

Then we consider the more general case when m,n, p ≥ 2.

Example 3. We use a five-letter alphabet Σ = {a, b, c, d, e} in the following three

DFAs, which are modified from the two DFAs in the proof of Theorem 1 in [20].

Let A = (Q1,Σ, δ1, 0, {m − 1}) be a DFA, where Q1 = {0, . . . ,m − 1} and, for

each state i ∈ Q1, δ1(i, a) = j, j = (i + 1) mod m, δ1(i, x) = 0, if x ∈ {b, d}, and
δ1(i, x) = i, if x ∈ {c, e}.

Let B = (Q2,Σ, δ2, 0, {n − 1}) be a DFA, where Q2 = {0, . . . , n − 1} and, for

each state i ∈ Q2, δ2(i, b) = j, j = (i + 1) mod m, δ2(i, c) = 1, and δ2(i, x) = i, if

x ∈ {a, d, e}.
Let C = (Q3,Σ, δ3, 0, {p − 1}) be a DFA, where Q3 = {0, . . . , p − 1} and, for

each state i ∈ Q3, δ3(i, d) = j, j = (i + 1) mod m, δ3(i, e) = 1, and δ3(i, x) = i, if

x ∈ {a, b, c}.

Following the construction in the proof of Theorem 1, the DFA D can be con-

structed from the DFAs in Example 3 for showing that the upper bound is attainable

for m,n, p ≥ 2. We note that, similar to the proof of Theorem 2, DFAs B and C in

this example change their states on disjoint letter sets, {b, c} and {d, e}. Thus, by
using a proof that is similar to the proof of Theorem 1 in [20], that shows the upper

bound for the state complexity of catenation can be reached, we can easily verify

that there are at least (m − 1)(2n+p − 2n − 2p + 2) + 2n+p−2 distinct equivalence

classes of the right-invariant relation induced by L(A)(L(B)∪L(C)) [10]. Therefore,

the upper bound can be attained and the following theorem holds.

Theorem 4. Given three integers m,n, p ≥ 2, there exist a DFA A of m states, a

DFA B of n states, and a DFA C of p states over the same five-letter alphabet such

that any DFA accepting L(A)(L(B)∪L(C)) needs at least (m−1)(2n+p−2n−2p+

2) + 2n+p−2 states.

A natural question is that, if we reduce the size of the alphabet used in DFAs

A,B,C, using a three-letter alphabet, can we attain the upper bound as well? We

give a positive answer in the next theorem under the condition m,n, p ≥ 3.
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Theorem 5. For integers m,n, p ≥ 3, there exist DFAs A, B and C of m, n, and

p states, respectively, defined over a three-letter alphabet, such that any DFA that

accepts L(A)(L(B)∪L(C)) has at least (m−1)(2n+p−2n−2p+2)+2n+p−2 states.

Proof. We define the following three automata over the three-letter alphabet Σ =

{a, b, c}.
Let A = (Q1,Σ, δ1, 0, {m−1}) be a DFA, where Q1 = {0, 1, . . . ,m−1}, and the

transitions are given as follows:

• δ1(i, a) = i+ 1 for i ∈ {0, . . . ,m− 2}, δ1(m− 1, a) = 0;

• δ1(i, e) = i for i ∈ Q1, where e ∈ {b, c}.

Let B = (Q2,Σ, δ2, 0, {n− 1}) be a DFA, where Q2 = {0, 1, . . . , n− 1}, and the

transitions are given as follows:

• δ2(i, a) = i for i ∈ {0, . . . , n− 3}, δ2(n− 2, a) = n− 1, δ2(n− 1, a) = n− 2;

• δ2(i, b) = i+ 1 for i ∈ {0, . . . , n− 2}, δ2(n− 1, b) = n− 1;

• δ2(i, c) = i for i ∈ Q2.

Let C = (Q3,Σ, δ3, 0, {p− 1}) be a DFA, where Q3 = {0, 1, . . . , p− 1}, and the

transitions are given as follows:

• δ3(i, a) = i for i ∈ {0, . . . , p− 3}, δ3(p− 2, a) = p− 1, δ3(p− 1, a) = p− 2;

• δ3(i, b) = i for i ∈ Q3;

• δ3(i, c) = i+ 1 for i ∈ {0, . . . , p− 2}, δ3(p− 1, c) = p− 1.

Let D = (Q, {a, b, c}, δ, ⟨0, ∅, ∅⟩, F ) be the DFA that accepts the language

L(A)(L(B)∪L(C)) constructed from those DFAs exactly as described in the proof

of Theorem 1, where

Q = {⟨q1, q2, q3⟩ | q1 ∈ Q1 − {m− 1}, q2 ∈ 2Q2 − {∅}, q3 ∈ 2Q3 − {∅}}
∪{⟨q1, ∅, ∅⟩ | q1 ∈ Q1 − {m− 1}}
∪{⟨m− 1, {0} ∪ q2, {0} ∪ q3⟩ | q2 ∈ 2Q2−{0}, q3 ∈ 2Q3−{0}},

F = {⟨q1, q2, q3⟩ ∈ Q | n− 1 ∈ q2 or p− 1 ∈ q3}.

We omit the definition of transitions.

Then we prove that the size of Q is minimal by showing that (I) any state in

Q can be reached from the initial state and (II) no two different states in Q are

equivalent.

Now we consider (I). It is clear that states ⟨q1, ∅, ∅⟩, for q1 ∈ Q1 − {m− 1}, are
reachable from the initial state on strings aq1 , and the state ⟨m − 1, {0}, {0}⟩ can

be reached from ⟨m− 2, ∅, ∅⟩ on the letter a.

We first show by induction on the size of the second component that any remain-

ing state in Q such that its third component is {0} can be reached from the state

⟨m−1, {0}, {0}⟩. We only use strings over the letters a, b. Thus, the last component

remains {0}.
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Basis: for any i ∈ {0, . . . ,m − 2}, the state ⟨i, {0}, {0}⟩ can be reached from

the state ⟨m− 1, {0}, {0}⟩ on the string ai+1. Then for any i ∈ {0, . . . ,m− 2} and

j ∈ {1, . . . , n},

⟨i, {j}, {0}⟩ = δ(⟨i, {0}, {0}⟩, bj).

Induction step: for i ∈ {0, . . . ,m− 1}, assume that all states ⟨i, q2, {0}⟩ such
that |q2| < k are reachable. Then we consider the states ⟨i, q2, {0}⟩ where |q2| = k.

Let q2 = {j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < · · · < jk ≤ n− 1.

Note that the states such that j1 = 0 are reachable as follows. If either (i)

jk ≤ n− 3, or (ii) jk−1 = n− 2 and jk = n− 1, we have

⟨m− 1, {0, j2, . . . , jk}, {0}⟩ = δ(⟨m− 2, {j2, . . . , jk}, {0}⟩, a).

If jk = n − 2, the states ⟨m − 1, {0, j2, . . . , jk}, {0}⟩ can be reached from the

states ⟨m − 2, {j2, . . . , jk−1, n − 1}, {0}⟩ by reading the letter a. If jk = n − 1

and jk−1 ̸= n− 2, the states ⟨m− 1, {0, j2, . . . , jk}, {0}⟩ can be reached from states

⟨m− 2, {j2, . . . , jk−1, n− 2}, {0}⟩ by reading the letter a. In all the cases, we reach

the state from a state such that |q2| = k − 1. Similarly, we can easily verify that,

by reading the letter a, states ⟨0, {0, . . . , jk}, {0}⟩ can be reached from the states

⟨m− 1, {0, . . . , jk}, {0}⟩. Note that the state ⟨0, q′, {0}⟩ is not simply reached from

⟨m− 1, q′, {0}⟩ by reading the letter a. We still need to consider the previous cases,

and these cases apply to the following states as well. For i ∈ {1, . . . ,m − 2}, the
states ⟨i, {0, . . . , jk}, {0}⟩ can be reached from the states ⟨i− 1, {0, . . . , jk}, {0}⟩.

Next, we show that all states such that 0 ̸∈ q2 are reachable. Note that the first

component of these states cannot be m− 1. Thus, for i ∈ {0, . . . ,m− 2}, we have

⟨i, {j1, . . . , jk}, {0}⟩ = δ(⟨i, {0, j2 − j1, . . . , jk − j1}, {0}⟩, bj1).

After the induction step, we can verify that all states in Q such that the third

component is {0} have been reached.

In the following, we consider the states whose third component is non-empty

but not {0}. Note that if the second component of a state does not contain the

states n − 2 and n − 1 or contains both of them, this component does not change

by reading the letter a. Thus, by using the letter c instead of the letter b in the

same induction step, we can show that, for i ∈ {0, . . . ,m− 1}, the states ⟨i, q2, q3⟩
in Q such that q2 ∩ {n − 2, n − 1} = ∅ or {n − 2, n − 1} ⊆ q2 are reachable from

the state ⟨0, q2, {0}⟩. The remaining states to be considered are the states ⟨i, q2, q3⟩
such that q2 contains either n − 2 or n − 1 but not both, for i ∈ {0, . . . ,m − 1}.
Assume q2 contains n − 2. Then by the same induction with the letters a, c, we

can reach the states ⟨i, q2, q3⟩ and states ⟨i′, q′2, q′3⟩, i, i′ ∈ {0, . . . ,m− 1}, from the

state ⟨0, q2, {0}⟩ such that q′2 = (q2 ∪ {n− 1})−{n− 2}. Moreover, if we replace q′2
with q2, the union of these two types of states is exactly all states in Q such that

their second component is q2. It is clear that those states ⟨i′, q2, q′3⟩ are reachable

from the state ⟨0, q′2, {0}⟩ by following the same induction step with letters a, c. An
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analogous argument can be applied to the states such that q2 contains n − 1 but

not n− 2.

Now all the states in Q are reachable, and next we will show that the states of

the DFA D are pairwise inequivalent. Let ⟨i, q2, q3⟩ and ⟨j, q′2, q′3⟩ be two different

states. We consider the following two cases:

(1) i < j. Then the string am−1−ibn−1cp−1a is accepted by the DFA D starting

from the state ⟨i, q2, q3⟩, but it is not accepted starting from the state ⟨j, q′2, q′3⟩.
(2) i = j. We only prove for the situation where q2 ̸= q′2, since the proof is analogous

when q3 ̸= q′3. Without loss of generality, there exists a state r such that r ∈ q2
and r ̸∈ q′2.

If i = j ̸= m− 1, we can verify that cp−1bn−r−2a is accepted by D from the

state ⟨i, q2, q3⟩ but not from the state ⟨j, q′2, q′3⟩.
If i = j = m−1, it is clear that r ̸= 0. We consider the following three cases.

(a) r ∈ {1, . . . , n − 3}. After reading the letter a, i and j become 0 and we

still have r ∈ q2 and r ̸∈ q′2. Thus, the resulting situation has just been

considered.

(b) r = n− 2. Then the state ⟨i, q2, q3⟩ reaches a final state on acp−1ab, but the

state ⟨j, q′2, q′3⟩ does not on the same string.

(c) r = n− 1. Then the state ⟨i, q2, q3⟩ reaches a final state by reading acp−1a,

but the state ⟨j, q′2, q′3⟩ does not.

4. Catenation combined with intersection

In this section, we investigate the state complexity of L1(L2∩L3), and show that its

upper bound (Theorem 6) coincides with its lower bound (Theorems 7 and 8). The

following theorem shows an upper bound for the state complexity of this combined

operation.

Theorem 6. Let L1, L2 and L3 be three regular languages accepted by an m-state,

an n-state and a p-state DFA, respectively, for m, n, p ≥ 1. Then there exists a DFA

of at most m2np − 2np−1 states that accepts L1(L2 ∩ L3). However, when m ≥ 1,

n = p = 1, the number of states can be lowered to m.

Theorem 6 gives a general upper bound of the state complexity of L1(L2 ∩ L3)

because m2np − 2np−1 is the mathematical composition of the state complexities

of the individual component operations. Thus, we omit the proof of this upper

bound. When m ≥ 1, n = p = 1, L(A)(L(B) ∩ L(C)) = L(A)Σ∗ if both L(B) and

L(C) are Σ∗. The resulting language is ∅ otherwise. Thus, the state complexity of

L(A)(L(B) ∩ L(C)) in this case is the same as that of L(A)Σ∗: namely, m [20].

When m ≥ 1, n = 1, p ≥ 2, L(A)(L(B)∩L(C)) = ∅, if L(B) = ∅, and L(A)L(C)

if L(B) = Σ∗. In this case, the state complexity of the combined operation is

m2p − 2p−1 which is the same as that of L(A)L(C) [20] and meets the upper

bound in Theorem 6. Similarly, when m ≥ 1, n ≥ 2, p = 1, the state complexity of
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L(A)(L(B)∩L(C)) is m2n−2n−1 which also attains the upper bound in Theorem 6.

Next, we show the upper bound m2np − 2np−1 is attainable when m,n, p ≥ 2.

2 -1m
a a a......

c c c

a
0

b,d
b,d

b,c,d

a,b,d

1

Fig. 3. The DFA A showing that the upper bound in Theorem 6 is attainable when m ≥ 2 and
n, p ≥ 1

Theorem 7. Given three integers m,n, p ≥ 2, there exists a DFA A of m states, a

DFA B of n states and a DFA C of p states over the same four-letter alphabet such

that any DFA accepting L(A)(L(B) ∩ L(C)) needs at least m2np − 2np−1 states.

Proof. Let A = (QA,Σ, δA, 0, FA) be a DFA, as shown in Figure 3, where QA =

{0, 1, . . . ,m− 1}, FA = {m− 1}, Σ = {a, b, c, d} and the transitions are given as:

• δA(i, a) = i+ 1 mod m, i = 0, . . . ,m− 1,

• δA(i, x) = 0, i = 0, . . . ,m− 1, where x ∈ {b, d},
• δA(i, c) = i, i = 0, . . . ,m− 1.

Let B = (QB ,Σ, δB , 0, FB) be a DFA, as shown in Figure 4, where QB =

{0, 1, . . . , n− 1}, FB = {n− 1} and the transitions are given as:

• δB(i, x) = i, i = 0, . . . , n− 1, where x ∈ {a, d},
• δB(i, b) = i+ 1 mod n, i = 0, . . . , n− 1,

• δB(i, c) = 1, i = 0, . . . , n− 1.

2 n
b b b......0

b,c
-1

c

b

a,c,d a,da,d a,d

c
1

Fig. 4. The DFA B showing that the upper bound in Theorem 6 is attainable when m ≥ 2 and

n, p ≥ 1

Let C = (QC ,Σ, δC , 0, FC) be a DFA, as shown in Figure 5, where QC =

{0, 1, . . . , p− 1}, FC = {p− 1} and the transitions are given as:
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• δC(i, x) = i, i = 0, . . . , p− 1, where x ∈ {a, b},
• δC(i, c) = 1, i = 0, . . . , p− 1,

• δC(i, d) = i+ 1 mod p, i = 0, . . . , p− 1.

2 p
d d d......0 -1

c

d

a,b,c a,ba,b a,b

c
c,d

1

Fig. 5. The DFA C showing that the upper bound in Theorem 6 is attainable when m ≥ 2 and
n, p ≥ 1

We construct the DFA D = (QD,Σ, δD, sD, FD}, where

QD = {⟨u, v⟩ | u ∈ QB , v ∈ QC},
sD = ⟨0, 0⟩,
FD = {⟨n− 1, p− 1⟩},

and for each state ⟨u, v⟩ ∈ QD and each letter e ∈ Σ,

δD(⟨u, v⟩, e) = ⟨u′, v′⟩ if δB(u, e) = u′, δC(v, e) = v′.

Clearly, there are n · p states in D and L(D) = L(B) ∩ L(C). Now we construct

another DFA E = (QE ,Σ, δE , sE , FE}, where

QE = {⟨q,R⟩ | q ∈ QA − FA, R ⊆ QD} ∪ {⟨m− 1, S⟩ | sD ∈ S, S ⊆ QD},
sE = ⟨0, ∅⟩,
FE = {⟨q,R⟩ | R ∩ FD ̸= ∅, ⟨q,R⟩ ∈ QE},

and for each state ⟨q,R⟩ ∈ QE and each letter e ∈ Σ,

δE(⟨q,R⟩, e) =
{
⟨q′, R′⟩ if δA(q, e) = q′ ̸= m− 1, δD(R, e) = R′,

⟨q′, R′⟩ if δA(q, e) = q′ = m− 1, R′ = δD(R, e) ∪ {sD}.

It is easy to see that L(E) = L(A)(L(B) ∩ L(C)). There are (m− 1) · 2np states in

the first term of the union for QE . In the second term, there are 1 · 2np−1 states.

Thus,

|QE | = (m− 1) · 2np + 1 · 2np−1 = m2np − 2np−1.

In order to show that E is minimal, we need to show that (I) every state in E

is reachable from the start state and (II) each state defines a distinct equivalence

class.

We prove (I) by induction on the size of the second component of states in QE .

First, any state ⟨q, ∅⟩, 0 ≤ q ≤ m− 2, is reachable from sE by reading the word aq.
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The we consider all states ⟨q,R⟩ such that |R| = 1. In this case, let R = {⟨x, y⟩}.
We have

⟨q, {⟨x, y⟩}⟩ = δE(⟨0, ∅⟩, ambxdyaq).

Notice that the only state ⟨q,R⟩ in QE such that q = m − 1 and |R| = 1 is

⟨m− 1, {⟨0, 0⟩}⟩ since the fact that q = m− 1 guarantees ⟨0, 0⟩ ∈ R.

Assume that all states ⟨q,R⟩ such that |R| < k are reachable. Consider ⟨q,R⟩
where |R| = k. Let R = {⟨xi, yi⟩ | 1 ≤ i ≤ k} such that 0 ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤
n− 1 if q ̸= m− 1 and 0 = x1 ≤ x2 ≤ . . . ≤ xk ≤ n− 1, y1 = 0, otherwise. We have

⟨q,R⟩ = δE(⟨0, R′⟩, ambx1dy1aq), where

R′ = {⟨xj − x1, (yj − y1 + n)modn⟩ | 2 ≤ j ≤ k}.

The state ⟨0, R′⟩ is attainable from the start state, since |R′| = k − 1. Thus, ⟨q,R⟩
is also reachable.

To prove (II), let ⟨q1, R1⟩ and ⟨q2, R2⟩ be two different states in E. We consider

the following two cases.

1. q1 ̸= q2. Without loss of generality, we may assume that q1 > q2. There always

exists a string t = cam−1−q1bn−1dp−1 such that

δE(⟨q1, R1⟩, t) ∈ FE and δE(⟨q2, R2⟩, t) /∈ FE .

2. q1 = q2, R1 ̸= R2. Without loss of generality, we may assume that |R1| ≥ |R2|.
Let ⟨x, y⟩ ∈ R1 −R2. Then

δE(⟨q1, R1⟩, bn−1−xdp−1−y) ∈ FE ,

δE(⟨q2, R2⟩, bn−1−xdp−1−y) /∈ FE .

Thus, the minimal DFA accepting L(A)(L(B)∩L(C)) needs at least m2np − 2np−1

states for m,n, p ≥ 2.

Now we consider the case when m = 1, i.e., L(A) = Σ∗.

Theorem 8. Given two integers n, p ≥ 2, there exists a DFA A of one state, a

DFA B of n states and a DFA C of p states over the same five-letter alphabet such

that any DFA accepting L(A)(L(B) ∩ L(C)) needs at least 2np−1 states.

Proof. When m = 1, n ≥ 2, p ≥ 2, we give the following construction. Let A =

({0},Σ, δA, 0, {0}) be a DFA, where Σ = {a, b, c, d, e} and δA(0, t) = 0 for any letter

t ∈ Σ. It is clear that L(A) = Σ∗.

Let B = (QB ,Σ, δB , 0, FB) be a DFA, whereQB = {0, 1, . . . , n−1}, FB = {n−1}
and the transitions are given by

• δB(i, a) = i+ 1 mod n, i = 0, . . . , n− 1;

• δB(i, b) = i, i = 0, . . . , n− 1;

• δB(0, c) = 1, δB(j, c) = j, j = 1, . . . , n− 1;

• δB(0, d) = 0, δB(j, d) = j + 1, j = 1, . . . , n− 2, δB(n− 1, d) = 1;
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• δB(i, e) = i, i = 0, . . . , n− 1.

Let C = (QC ,Σ, δC , 0, FC) be a DFA, where QC = {0, 1, . . . , p− 1}, FC = {p− 1}
and the transitions are given by

• δC(i, a) = i, i = 0, . . . , p− 1;

• δC(i, b) = i+ 1 mod p, i = 0, . . . , p− 1;

• δC(0, c) = 1, δC(j, c) = j, j = 1, . . . , p− 1;

• δC(i, d) = i, i = 0, . . . , p− 1;

• δC(0, e) = 0, δC(j, e) = j + 1, j = 1, . . . , p− 2, δC(p− 1, e) = 1.

Construct the DFA D = (QD,Σ, δD, ⟨0, 0⟩, FD) that accepts L(B) ∩ L(C) in the

same way as the proof of Theorem 7, where

QD = {⟨u, v⟩ | u ∈ QB , v ∈ QC},
FD = {⟨n− 1, p− 1⟩},

and for each state ⟨u, v⟩ ∈ QD and each letter t ∈ Σ,

δD(⟨u, v⟩, t) = ⟨u′, v′⟩ if δB(u, t) = u′, δC(v, t) = v′.

Now we construct the DFA E = (QE ,Σ, δE , sE , FE), where

QE = {⟨0, R⟩ | ⟨0, 0⟩ ∈ R,R ⊆ QD},
sE = ⟨0, {⟨0, 0⟩}⟩,
FE = {⟨0, R⟩ ∈ QE | R ∩ FD ̸= ∅},

and for each state ⟨0, R⟩ ∈ QE and each letter t ∈ Σ,

δE(⟨0, R⟩, t) = ⟨0, R′⟩ where R′ = δD(R, t) ∪ {⟨0, 0⟩}.

Note that ⟨0, 0⟩ ∈ R for every state ⟨0, R⟩ ∈ QE , since 0 is the only state in A and

it is both initial and final. It is easy to see that L(E) = L(A)(L(B) ∩L(C)) and E

has 2np − 2np−1 = 2np−1 states in total. Now we show that E is a minimal DFA by

(I) every state in E is reachable from the initial state and (II) each state defines a

distinct equivalence class.

We again prove (I) by induction on the size of the second component of states

in QE . First, the only state in ⟨0, R⟩ ∈ QE such that |R| = 1 is the initial state,

⟨0, {⟨0, 0⟩}⟩.
Assume that all states ⟨0, R⟩ such that |R| ≤ k are reachable. Consider ⟨0, R⟩

where |R| = k + 1. Let R = {⟨0, 0⟩, ⟨x1, y1⟩, . . . , ⟨xk, yk⟩} such that 0 ≤ x1 ≤ x2 ≤
. . . ≤ xk ≤ n− 1. We consider the following three cases.

Case 1. ⟨0, y1⟩ ∈ R, y1 ≥ 1. If there exists ⟨0, yi⟩ ∈ R, yi ≥ 1, 1 ≤ i ≤ k, then

x1 = 0 and y1 ≥ 1, since 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ n− 1. For this case, we have

⟨0, R⟩ = δE(⟨0, R1⟩, bey1−1),

where R1 = {⟨0, 0⟩} ∪ S1 ∪ T1,

S1 = {⟨xj , p− 1⟩ | ⟨xj , 0⟩ ∈ R, xj ̸= 0},



May 16, 2011 15:27 WSPC/INSTRUCTION FILE 15

14 Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

T1 = {⟨xj , (yj − y1 + p− 1) mod (p− 1)⟩ | ⟨xj , yj⟩ ∈ R, yj ̸= 0, 2 ≤ j ≤ k}.

Notice that ⟨0, 0⟩ /∈ S1 ∪ T1 and S1 ∩ T1 = ∅. So the state ⟨0, R⟩ is reachable from

the initial state, since |R1| = k and ⟨0, R1⟩ is reachable.
Case 2. x1 ≥ 1, ⟨xi, 0⟩ ∈ R, 1 ≤ i ≤ k. It is easy to see that every xi ≥ 1 because

xi ≥ x1. We have

⟨0, R⟩ = δE(⟨0, R2⟩, adxi−1),

where R2 = {⟨0, 0⟩} ∪ T2,

T2 = {⟨(xj − xi + n− 1) mod (n− 1), yj⟩ | ⟨xj , yj⟩ ∈ R, 1 ≤ j ≤ k, j ̸= i}.

There are k elements in R2. So the state ⟨0, R⟩ is also reachable for this case.

Case 3. x1 ≥ 1, yi ≥ 1, 1 ≤ i ≤ k, because every xi ≥ x1 ≥ 1, we have

⟨0, R⟩ = δE(⟨0, R3⟩, cdx1−1ey1−1),

where R3 = {⟨0, 0⟩} ∪ T3,

T3 = {⟨(xj − x1 + 1), (yj − y1 + p− 1) mod (p− 1) + 1⟩ | ⟨xj , yj⟩ ∈ R, 2 ≤ j ≤ k}.

So every state ⟨0, R⟩ in E is reachable when |R| = k + 1.

To prove (II), let ⟨0, R⟩ and ⟨0, R′⟩ be two different states in E. Without loss

of generality, we may assume that |R| ≥ |R′|. So we can always find ⟨x, y⟩ ∈ R −
R′. Clearly, ⟨x, y⟩ ≠ ⟨0, 0⟩. So there exists a string w = an−1−xbp−1−y such that

δE(⟨0, R⟩, w) ∈ FE and δE(⟨0, R′⟩, w) /∈ FE .

Thus, the minimal DFA that accepts Σ∗(L(B)∩L(C)) has at least 2np−1 states

for m = 1, n, p ≥ 2.

This lower bound coincides with the upper bound given in Theorem 6. Thus,

the bounds are tight for the case when m = 1, n, p ≥ 2.

5. Conclusion

In this paper, we have studied the state complexities of two basic combined

operations: catenation combined with union and catenation combined with in-

tersection. We have proved that the state complexity of L(A)(L(B) ∪ L(C)) is

(m − 1)(2n+p − 2n − 2p + 2) + 2n+p−2 for m,n, p ≥ 1 (except the situations when

m ≥ 2 and n = p = 1), which is significantly less than the mathematical compo-

sition of state complexities of its component operations, m2np − 2np−1. We have

also proved that the state complexity of L(A)(L(B) ∩ L(C)) is m2np − 2np−1 for

m,n, p ≥ 1 (except the cases when m ≥ 2 and n = p = 1), which is exactly the

mathematical composition of state complexities of its component operations.
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