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Abstract

Counsidering two DNA molecules which are Watson-Crick (WK) com-
plementary to each other “equivalent” with respect to the information
they encode enables us to extend the classical notions of repetition, period,
and power. WK-complementarity has been modelled mathematically by
an antimorphic involution 6, i.e., a function 6 such that 6(zy) = 6(y)6(zx)
for any z,y € £*, and 62 is the identity. The WK-complementarity being
thus modelled, any word which is a repetition of v and 6(u) such as uu,
uf(u)u, and uh(u)f(u)f(u) can be regarded repetitive in this sense, and
hence, called a f-power of . Taking the notion of §-power into account,
the Fine and Wilf’s theorem was extended as “given an antimorphic in-
volution 8 and words wu,v, if a §-power of v and a f-power of v have a
common prefix of length at least b(|ul, |v]) = 2|u| + |v| — ged(|ul, |v]), then
u and v are #-powers of a same word.” In this paper, we obtain an im-
proved bound ¥’ (|ul, [v]) = b(|u|, |v]) — |ged(|ul, |v])/2]. Then we show all
the cases when this bound is optimal by providing all the pairs of words
(u,v) such that they are not #-powers of a same word, but one can con-
struct a -power of v and a f-power of v whose maximal common prefix is
of length equal to b'(|u|, |v]) — 1. Furthermore, we characterize such words
in terms of Sturmian words.

1 Introduction

This paper investigates an extension of Fine and Wilf’s theorem in combinatorics
of words. Recall that a positive integer p is called a period of a word w if the
i-th and the (i + p)-th letters of w are the same for any 1 < ¢ < |w|—p. Fine and
Wilf’s theorem [12] states that if a word has two periods p, ¢ and is of length at
least p + ¢ — ged(p, q), then ged(p, g) is also its period, where ged denotes the
greatest common divisor. A concise method to prove this result, [5], also proves
that the lower bound is “strongly optimal” in the following sense, which was
defined in [6], that for any pair (p, q) of integers with p > g > ged(p, ¢), one can
construct a word of length p + ¢ — ged(p, ¢) — 1, with p and ¢ as periods, but
without ged(p, ) as period (the set of all such words with p and ¢ being coprime
is denoted by PER). This theorem has several extensions: e.g., considering more



than two periods [3], [4], [6], [13], based on abelian periods [7], for partial or
bidimensional words [1], [2], [15].

Changing the focus from integers to words, this theorem can be reformu-
lated as follows: “Given words w,v, if a power of v and a power of v have
a common prefix of length at least |u| + |v| — ged(|ul, |v]), then w and v are
powers of a common word, i.e., they share their primitive root.” This result
was recently extended in [9], by generalizing the notion of power of a word
as inspired by the characteristics of DNA-encoded information. Briefly, a DNA
strand can be abstracted as a word over the four-letter alphabet {A,C, G, T}. Due
to the so-called Watson-Crick (WK) complementarity A-T and C-G, two comple-
mentary DNA single strands with opposite orientations bind to each other to
form the structure known as a DNA double strand. WK-complementarity has
been modelled mathematically by an antimorphic involution 0, i.e., a function
6 such that 6(zy) = 6(y)f(x) for any z,y € L* (antimorphism), and 6? is
the identity (involution). An antimorphic involution captures the main fea-
tures of WK-complementarity, namely that the WK-complement of a DNA sin-
gle strand is the reverse (antimorphic property) complement (involution prop-
erty) of the given strand. If we set the antimorphic involution on the four-
letter DNA alphabet defined by #(A) = T and 6(C) = G, then for any word
w € {A,C,G, T}* representing a DNA single strand, the word (w) will repre-
sent its WK-complement. For example, using 6, we can calculate the WK-
complement of AAC as #(AAC) = 6(C)6(AA) = 6(C)A(A)O(A) = GTT. We can say
that two complementary DNA single strands are equivalent because one can
be obtained from the other by 6. Based on this idea, for instance, the strand
AACGTTGTT becomes a “power” of AAC because it consists of AAC followed by its
WK-complement GIT twice. By using an antimorphic involution € as a model
of the WK-complementarity, a word in u{u, §(u)}* is called a 8-power of u [9].
With this extended notion of power, the Fine and Wilf’s theorem was extended
in [9] in the following way: “Given an antimorphic involution 6 over an alphabet
3, and given non-empty words u, v over ¥ of lengths p, ¢ with p > g, if a 8-power
of u and a §-power of v share a prefix of length at least b(p, q) = 2p+q—ged(p, q),
then u and v are #-powers of a common word (in such case, we say that v and v
share their 0-primitive root).” In [9] some examples of words u, v were provided
with the property that such a common prefix of length b(p,q) — 1 is too short
to force u and v to have the same #-primitive root. However, these examples
do not answer the question of whether b(p, q) is strongly optimal or not, i.e.,
whether for any (p,q), we can find two words u,v of length p, ¢ with different
f-primitive roots such that a 8-power of u and a -power of v share a prefix of
length b(p,q) — 1.

The first contribution of this paper is to give the extended Fine and Wilf’s
theorem an improved bound ¥'(p,q) = b(p,q) — [ged(p,¢)/2] in a constructive
manner, which amounts to the negative answer to the above question. Specif-
ically speaking, we design a pair (u,v) of words of lengths p,q with distinct
f-primitive roots in such a manner that one can construct a #-power of v and a
f-power of v such that their common prefix is as long as possible relative to p
and q. We prove that such a common prefix is of length at most b'(p, ¢) — 1, and



hence, V' (p, q) becomes the improved bound (Theorem 8). We call such a com-
mon prefix of length exactly b/(p,q) — 1 a boundary common prefix based on u
and v. Being constructive, our proof simultaneously characterizes the set of all
pairs of words with distinct #-primitive roots based on which one can construct
a boundary common prefix. This characterization is the main contribution of
this paper. Two corollaries of interest follow: First, there are (infinitely many)
pairs of integers (p,q) such that there does not exist any boundary common
prefix based on words of respective lengths p, ¢ (Corollary 3), and hence, b'(p, q)
is not strongly optimal. Second, all the boundary common prefixes are homo-
morphic images of boundary common prefixes based on some binary words of
coprime lengths. This is very similar to the fact that the words which verify
the strong optimality of the bound for the Fine and Wilf’s theorem are homo-
morphic images of a (binary) word in PER. de Luca and Mignosi in [11] proved
that a word in PER is a finite Sturmian word, or more strongly, the set of all
factors of words in PER is equal to the set of all finite Sturmian words. We will
show that boundary common prefixes based on words of coprime lengths are
also finite Sturmian words, but there exists a finite Sturmian word which never
appears as a factor of such boundary common prefixes.

This paper is organized as follows: Section 2 introduces basic notions and
notation as well as some known results used for our discussion. That is followed
by the constructive proof of the improved bound b'(p,q) in Section 3 with a
few results stating that this bound is not strongly optimal. In Section 4, the
relationship between boundary common prefixes and finite Sturmian words is
discussed. Section 5 concludes this paper with some future directions of research.

2 Preliminaries

Let ¥ be a finite alphabet containing at least two letters. Throughout this
paper, elements of ¥ (letters) will be denoted by a,b. By X* we denote the
set of all finite words over ¥. The empty word is denoted by X and let ¥+ =
2*\ {A}. The length of a word w € E* is denoted by |w|. For a set X C X7,
X*={r1z2- 2w, |z; € X forall 1 <i<n},and X+ = X*\ {\}. For a word
w € X* a word z € X* is called a prefiz (suffix) of w if w = zr (resp. w = rx)
for some r € ¥*. Let Pref(w) and Suff(w) be the sets of all prefixes of w and
of all suffixes of w, respectively. Also let pref, (w) denote the prefix of w of
length n. If w = rat for some r,t € ¥*, then z is called an infix of w, and if
furthermore r,t # A, x is called a proper infix of w. For z,y € ¥*, we denote by
x A y the mazimal common prefix of z and y.

A non-empty word w € X7 is said to be primitive if it cannot be written
as a power of another word; that is, if w = t", then n = 1 and w = ¢. For a
non-empty word w € X1, the shortest word ¢+ € ¥ T such that w = ™ for some
n > 1 is called the primitive root of w and is denoted by p(w). With respect
to the primitive root and the maximal common prefix, there is a result from [5]
shown in a form that will be utilized in this paper.



Proposition 1 ([5]). Let X = {r,t} C X", z € rX*, andy € tX*. If [z Ay| >
|rt|, then p(r) = p(t).

A mapping 6 : ¥* — ¥* is called an antimorphism if for any words z,y € X*,
0(zy) = 0(y)0(x); an involution if 62 is the identity function. Throughout this
paper, 6 is assumed to be an antimorphic involution on ¥ unless otherwise
noted explicitly. The mirror image (or mirror involution), which maps a word
to its reverse, is a typical antimorphic involution. A word w € ¥* is called a
0-palindrome if w = 8(w), see [10]. The next two lemmas on @-palindromes play
significant roles in this paper.

Lemma 1. For 0-palindromes z,y € X* of the same length d, if pref;y/y(z) =
prefry/01(y), then z = y.

Lemma 2. Let z,y € XT be two 0-palindromes with d = ged(|zl,[y[) and
|z| + |y| > 3d. For any integer i > 1, if |zy Ay*z| > |zy| — 2d, then p(z) = p(y).

Proof. The first case is when |z| = d. Due to the hypothesis on |z| + |y|, in
this case we have |y| > 2d. Then the overlap between zy and y'z implies that y
begins with z. If |y| = 2d, then y = z? due to x = 6(z) and y = §(y); otherwise
(ly| > 3d), the overlap implies |zy A y| > 2d, and hence, 22 € Pref(y). Because
of z = 0(z) and y = §(y), y has z? also as its suffix. Combining these together
yields zy = yz. Using Proposition 1, we get p(z) = p(y).

The second case is when |z| > 2d and |y| = d. Let z, = pref, _4(2).
Under this length condition, the overlap between zy and y‘z implies that =, €
Pref(y‘z,). Since the length of z, is a multiple of d, this means that z, is a
power of y and y is a prefix of z,, i.e., y € Pref(z). This is equal to y € Suff(z)
and actually now we have that x is a power of y.

The last case is when |z|,|y| > 2d. In this case, the overlap gives = €
Pref(y‘z) and y € Pref(zy). So, if |y| > |z|, then the latter prefix relation
implies that z € Pref(y), which is equivalent to z € Suff(y). With y € Pref(zy),
this implies that zy = yz so that p(z) = p(y). Conversely, if |y| < |z|, then
according to z € Pref(y'z), we can let x = y’y, for some j > 1 and y,, € Pref(y).
Since z and y are f-palindromes, x = y’y, = 0(y,)y’ holds. This equality gives
yp = 0(y,), and hence, imposes p(y,) = p(y) = p(z) due to Proposition 1. O

In [9], a special class of primitive words was proposed that takes into account
the notion of antimorphic involution. For a non-empty word ¢t € T, we call
a word in t{t,0(t)}* a 6-power of t. A non-empty word w € X7 is said to be
0-primitive if it cannot be written as a -power of another word, that is, for
t e Xt, w e t{t,0(t)}* implies w = t. The O-primitive root of w, denoted by
po(w), is the #-primitive word ¢ such that w € t{¢,6(¢)}*. The uniqueness of
f-primitive root was proved in [9] using Theorem 3 in Section 3.

Lemma 3 ([9]). Let w € Tt be a 0-primitive word and wy,ws,ws, ws €
{w,0(w)}. If wywsz = ywswy holds for some non-empty words z,y € L+
with |z|, |y| < |w|, then wa # ws.



From this lemma, the next theorem easily follows. This is an analogous
result to the one stating that a primitive word cannot be a proper infix of its
square.

Theorem 1 ([14]). For a 0-primitive word w € ¥, neither wl(w) nor 6(w)w
can be a proper infix of a word in {w,f(w)}3.

3 An Improved Bound for the Extension of Fine
and Wilf’s Theorem

Taking the §-primitivity into account, an extension of the Fine and Wilf’s the-
orem was proposed in [9], of the following two forms:

Theorem 2 ([9]). For u,v € ¥ with |u| > |v|, if a 8-power of u and a 6-
power of v share a common prefix of length at least 2|u| + |v| — ged(Jul, [v]),
then po(u) = po(v), i.e., there exists a O-primitive word t € Lt such that
u,v € t{t,0(t)}*.

Theorem 3 ([9]). For u,v € X%, if a 8-power of u and a 6-power of v share
a common prefix of length at least lem(|u|, |[v]), then po(u) = pg(v), where
lem(Jul|, |[v|) denotes the least common multiple of |u| and |v|.

These theorems give two bounds, and one can be larger than the other
depending on the value of ged(Jul, [v|) as lem(|ul, |v|) < 2|u| + |v] — ged(|u], |v])
if and only if |v| < 2ged(|ul,|v]). Thus, for integers p, ¢ with p > ¢, by letting

b(p, g) = 4 P>9) if ¢ < 2ged(p, 9); 1)
’ 2p+q —ged(p,q) if ¢ > 3ged(p, q),

one can merge Theorems 2 and 3 into one theorem as follows.

Theorem 4. For u,v € L1 with |u| > |v|, if a 6-power of u and a 6-power of
v share a common prefiz of length at least b(|ul, |[v]), then po(u) = po(v).

This theorem indicates the possibility of constructing two words u,v with
|u| > |v| such that a #-power of u and a 8-power of v have a common prefix of
length b(|ul, [v]) — 1, while at the same time py(u) # pg(v). Here we provide two
of such examples, which were introduced in [9].

Ezample 1. Let 0 : {a,b}* — {a,b}* be the mirror involution, u = a?ba’®b, and
v = a’ba. Then, u® and v?*6(v)?v have a common prefix of length 2|u| + |v| —
ged(|ul, |v]) — 1, but pg(u) # pe(v). Figure 1 is a visualization of this example.

Ezample 2. Let 6 : {a,b}* — {a,b}* be the mirror involution, u = ba’baba, and
v = ba*ba. Then uf(u)? and v* have a common prefix of length 2|u| + |v]| —

ged(lul, [v]) — 1, but ps(u) # pe(v).
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Figure 1: Even from words with distinct #-primitive roots, it is possible to
construct f-powers whose maximal common prefix is shorter by 1 than the
bound given in Theorem 4.

In [6], a sharp distinction was made between a “good” bound and an “op-
timal” bound. Following this distinction, we define the optimality of a bound
in the context of the extended Fine and Wilf’s theorem. For a pair of integers
(p,q) with p > ¢ > 2ged(p,q)!, an integer k is called a good bound for (p,q) if
for any antimorphic involution 6 and for any words u,v € £ with |u| = p and
|v| = g, once there exist a §-power of u and a §-power of v which share a prefix
of length at least k, one has pg(u) = ps(v). Based on this, k is an optimal bound
for (p,q) if it is a good bound for (p,q) whereas k — 1 is not; i.e., there exist an
antimorphic involution # and words u,v of length p and ¢ with pg(u) # pg(v)
from which one can construct a #-power of u and #-power of v whose maximal
common prefix is of length £ — 1. A bound b(-,-) of two variables is said to be
strongly optimal if for any (p, q) satisfying the inequality mentioned previously,
b(p, q) is optimal. Although the goodness, optimality, and strong optimality are
defined here for the extended Fine and Wilf’s theorem, these notions can be
defined for any variant of this theorem.

Examples 1 and 2 prove the optimality of b(p, q) for (p, ¢) equal to (7,4) and
(7,5), respectively. The bound given by the Fine and Wilf’s theorem is known
to be strongly optimal (see [5]). A question, therefore, arises of whether b(p, q)
is strongly optimal or not. We will show that b(p,q) is not strongly optimal
by proving that b'(p,q) = b(p, q) — |ged(p, ¢)/2] is still a good bound, strictly
smaller than b(p, q) unless p and ¢ are coprime.

Unlike the proof of Theorem 4 in [9], our proof in the following is construc-
tive. More concretely speaking, we will search for words u and v based on which
one can build a boundary common prefiz. For words u,v € ¥ with |u| > |v]
and pg(u) # pe(v), we call a word w € I a boundary common prefiz based on
u and v if there exist a f-power of u and a f-power of v whose maximal common
prefix is w and of length at least b'(|ul, |v]) — 1. By BCPgy(u,v), we denote the
set of all boundary common prefixes based on v and v. Figure 1 illustrates a
boundary common prefix a?ba®ba’ba®ba® based on the specific u and v given
in Example 1. What we actually prove in the following is that the length of
boundary common prefixes based on u and v is ezactly b'(Ju|, |v]) — 1.

IThe first inequality can be assumed without loss of generality. The second one is rea-
sonable in the context of Fine and Wilf’s theorem because ¢ = gcd(p, ¢) means that p is a
multiple of g, and hence, the period p is not essential. Whenever we refer to p,q from now
on, we implicitly assume that the inequality p > ¢ > 2 gcd(p, ¢) holds.
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Figure 2: Two words u? and v(® 1/20(v)(»~1/2+1 ghare a prefix of length
2lu| — [d/2].

As shown in Eq.(1), b(p, q) displays different behaviours depending on whether
g < 2gcd(p, q) or not, and hence, so does b'(p,q). As such, we will prove that
b'(p,q) is good for (p,q) with p > q = 2gcd(p, q) in Section 3.1, and for (p,q)
with p > ¢ > 3 gcd(p, ¢) in Section 3.2. Note that we do not have to consider
any (p,q) with p > g = ged(p, q) as mentioned previously. In Section 3.3, we
will combine these two results together to conclude that b'(p, ¢) is good for any

(p,q)-

3.1 The case when ¢ = 2gcd(p, q)

Firstly we handle the case ¢ = 2 gcd(p, ¢) in Proposition 2. Its proof will suggest
a construction of examples which verify the optimality of the new bound ' (p, q)
for any pair of integers (p, q) satisfying this condition.

Proposition 2. Let u,v € 1 with |u| > |v| and |v] = 2ged(|ul,|v]). If a
0-power of u and a §-power of v share a prefix of length 2|u| — |ged(|ul, |[v])/2],
then po(u) = po(v).

Proof. Let d = ged(|ul, |v|). The length condition on |u| and |v| is equivalent to
that 2|u| = n|v| holds for some odd integer n > 3. Let us translate the problem
setting as: ujus and vy v, - - - v, agree with each other up to their first 2|u|—|d/2]
letters, where u; = u, us € {u,0(u)}, v1 = v, and va,...,v, € {v,0(v)} (see
Figure 2). One can regard u; as a catenation of n words or ‘blocks’ w1, wa, ..., wn
of length d. In the similar fashion, one can let uy = wyy1 - - - wa, for some words
Wnt1s- - -, Wy Of length d. Then v; = wa;_1we; holds for any i up ton — 1. As
for v, we can let v,, = wzn_lpref[d/ﬂ (wan)z for some word z of length |d/2].

It is clear that when s is 8(u), V(n41)/2 = WnWn41 becomes a f-palindrome
(v = 0(v)) because it is located at the center of ujus. Hence, w,y1 = 6(w,),
ie, v = 0(v) = wpb(wy), and u = v(» /2y, These mean that u,v €
W {wn, 0(w,)}* so that pg(u) = pg(v).

Let us consider the other case when us is u. Let w; = o and wy = 3. Since
ug = u begins with af, wp4+1 = a and wpyo = 8. If either V(nt1)/2 = WnWni1
OF V(nt1)/241 = Wnt2Wn4t3 is v, then a overlaps with 8 and results in that
a = B. As a result, u,v € a{a,0(a)}*, ie., po(u) = pg(v). If neither holds,
then we obtain a = 6(a), 8 = 0(8), and w, = B; furthermore if n + 3 # 2n,
then wp4+3 = a. According to the same argument, we can figure out that unless



Vg = ++r = Upy1)2—1 = U and Ypy1y2 = 0 = Uno1 = v, = O(v), one
has pg(u) = pe(v). In this only one remaining case (illustrated in Figure 2),
wan = B and pref(, o1 (w2n)z = a. Thus, @ = B due to Lemma 1, and hence,
po(u) = po(v). O

This proof clarifies that the only pair of a 8-power of u and a #-power of
v which can share a prefix of length 2|u| — d without imposing pg(u) = pg(v)
is (uu,v(*D/29(v)("—1/2+1)  where n satisfies 2|u| = n|v|. Since 2|u| — d <
2|u| — |d/2] — 1, the next result follows from this proof.

Corollary 1. |[BCPy(u,v)| < 1 for any u,v € T+ with pe(u) # pe(v) and
lul > |v] = 2ged(Jul, |v]).

The proof of Proposition 2 and Figure 2 hint the possibility that if o and 8
are f-palindromes of the same length d which disagree with each other for the
first time at their center, i.e., their [d/2]-th letter, then we can reach the new
bound minus one while keeping pg(u) # pg(v). For instance, let § be the mirror
involution on {a,b}, @ = a?, and

_ fal4/21"1pald/2171if 4 is odd @)
| al4/21=1pbald/21=1 if g is even.

For u = (af)""Y/28 and v = af, we have [u? A v("=D/2g(v)("=D/2+1| =

2|u| — |d/2] — 1. Since v contains at most two occurrences of b and they occur

only in the latter half of it, v is #-primitive. Hence, ps(u) # pg(v).

Theorem 5. b'(p, q) is optimal for any pair (p,q) with p > q = 2gcd(p,q).

Besides giving the verification of optimality to b'(p,q), the proof enables
us to enumerate all pairs of (u,v) with distinct 8-primitive roots, |u| > |v| =
2 ged(|ul, [v]), and BCPg(u, v) is non-empty, i.e., |BCPy(u,v)| =1 (Corollary 1).
The way to construct (u,v) from (a, ) being known (see Figure 2), it suffices
to provide the set of all possible values of (o, ). Note that it is insufficient
for (a, B) to be a pair of two distinct §-palindromes of the same length d and
with the same prefix of length [d/2] — 1. For instance, although a = af(a)
and B = 6(a)a satisfy these conditions, u,v € a{a,8(a)}*, i.e., pa(u) = po(v).
Excluding these instances leaves the following three candidate sets:

T, = {(zaf(z),zb8(z)) | = € £*, a,b € T such that a # b, a = 6(a), b = 6(b) };
T, = {(zab(a)d(z),zb0(b)8(z)) |z € £*, a,b € T such that a # b, a # 6(b) };
T; = {(zaf(a)f(z),z0(a)ab(z)) | x € £F such that a # 6(a), = € {a,0(a)}"}.

Actually all of these sets serve our purpose, and hence, in the rest of this paper,
we will use a, only to denote a pair of words in T3 U T5 U T3. In order to
see that (a, ) makes the words u = (af)(*~1/23 and v = af have distinct
f-primitive roots, we just have to prove that there does not exist a word ¢ such
that o, 3 € {t,0(t)}*. This is because u,v € {a,}" and if ps(u) = po(v),
then due to d = ged(|ul,|v]), t = po(u) is of length at most d, and hence,
a,B € {t,0(t)}.



Proposition 3. If (o, 8) € Ty UTy UTs, then there does not exist t € X+ such
that a, B € {t,0(t)}".

Proof. Note that o # 3. Suppose the existence of such ¢t and let @ = t; - - - t, and
B =t;---t) for some k > 1 and ¢1,...,tk,t},...,t, € {t,0(8)}. If (a,B) € T,
then the length of a (and ) is odd so that k is odd. Since a = 6(a), this
means that ¢ = 6(t), and hence, a = 3, which is a contradiction. Even if
(a,B) € Ty U T3, an odd k causes the same problem.

Let us consider the case (a,3) € T» and k is even. Then t; -- ;)5 = za,
trjo41 - -te = 0(a)0(z), t) '-'t;c/2 = zb, and t;c/Q—‘,—l -t = 6(b)6(z). Hence,
for some y € Suff(z), tx/2 = ya, tej211 = 0(a)0(y), 1}, ), = yb, and &}, =
6(b)0(y). Since a # b, both t; /5 # t%/z and tp/a41 # t2/2+1 must hold. These
four words are either ¢ or 6(t) so that we have either ya = 6(a)f(y) and yb =
0(b)0(y) or ya = 6(b)d(y) and yb = 0(a)f(y). In the latter case, if y is empty,
then a = 6(b); otherwise, these two equations imply that y begins with 6(b) and
with 6(a) so that 6(b) = 6(a); both contradict the condition on a,b in T5. Even
in the former case, unless y is empty, we reach this contradiction along the same
argument. If y is empty, then a = 6(a), b = 6(b), and one of these has to be ¢
and the other has to be 6(t). This is, however, impossible because a is assumed
to be neither b nor 8(b).

The same but simpler argument works for («,3) € T3. Note that along
this argument y should be non-empty because otherwise 5,2 = a, and hence,
@ =t1--tgs_1 € {a,0(a)}*, which is against the definition of T5. O

Theorem 6. Let u,v € X with ps(u) # pe(v) and |u] > |v] = 2ged(|ul, |[v])-
Then BCPy(u,v) # 0 if and only if u = (aB)™ V28 and v = af for some odd
integer n > 3 and (o, B) € Ty UT> U T3.

In the next subsection, we will prove that even when this length condition
lu] > |v| = 2ged(|ul, |v]) does not hold, the existence of boundary common
prefix requires u and v to be described by two distinct §-palindromes a, 3 of
length d taken from Ti, T», or T3, and hence, these three sets will completely
characterize the boundary common prefixes.

3.2 The case when ¢ > 3ged(p, q)

The proof of our improved bound ¥'(p,q) continues here for (p,q) with p >
g > 3ged(p,q). Under this length condition, by definition, b'(p,q) = 2p + ¢ —
ged(p, ¢) — | ged(p, ¢)/2]. Unlike the case considered in the previous subsection,
this bound shall turn out not to be optimal for some such (p, ¢). A constructive
way to find the optimal bound is to build an antimorphic involution 8 and words
uw and v with distinct f-primitive roots and |u| > |v| > 3 ged(|ul, |v]) such that
the maximal common prefix between a 6-power of u and a #-power of v gets
as long as possible relative to |u| and |v|. This informal description allows us
to assume that u and v are @-primitive, though in formal problem settings the
validity of this assumption has to be verified (see Lemma 5.)



. u or O(u)
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Figure 3: A boundary common prefix based on v and v. This shows how uusus
and vvy - - - UpUny1 overlap with each other when Condition (3) is satisfied.

First of all, we briefly mention how small the optimal bound for (p,q) can
be relative to p and q. The following parameterized example proves that 2p is
not a good bound for any such pair (p, q), that is, the optimal bound has to be
bigger than 2p.

Ezample 3. Let 6 be the mirror involution on {a,b}. For a given (p,q) with p >
q > 3ged(p, q), let v = 2 (med Dp=2p (med 9) and yf(u) = vl2P/alg2p (mod g)
Then |uf(u)us A v[?P/91| = 2p regardless of the value of uz € {u,8(u)} because
both u and 6(u) begin with a. In addition, ps(u) # pe(v).

As a digression, this example can be easily modified to show that 2p +
[ged(p,q)/2] — 1 is not a good bound for any such (p,q), either. Since —2p
(mod ¢) is a multiple of ged(p,q), we can say that the suffix b—27 (med 9) of ¢

consists of % blocks b. Replacing each of these blocks with 3 given in

Eq. (2) verifies this point.

To return to our point, v and v are to be constructed so as for such a
maximal common prefix to be of length at least 2|u| in light of Example 3.
Hence, the common prefix is formalized with an integer n satisfying (n—1)|v| <
2|u| < n|v| and words uy,us,us € {u,0(uw)} and vy,...,v,, 011 € {v,0(v)} as
ULU2U3 A V1 - - UpUny1 With the following condition:

|ugrugug A vy - - UpUnt1| > 2|u] + k for some k >0 (3)

Note that u; and vy are to be fixed to u and v without loss of generality. Figure 3
illustrates the maximal common prefix between a #-power of u and a 6-power
of v satisfying Condition (3) with k = |v| — ged(|ul, [v]) — |ged(|ul, |v])/2] — 1.

Lemma 4. Let u,v be distinct 8-primitive words with |u| > |v] > 3 ged(|ul, |v]).
If there exist an integer n satisfying (n — 1)|v| < 2|u| < n|v|, and words uy = wu,
uz,uz € {u,0(uw)}, v1 = v, va,...,Vn, Unt1 € {v,0(v)} satisfying Condition (3),
then one of the following two cases holds:

1. Uo :0(u) and V] =+ " = Up_1 = U;

2. Uz =, V1 =0 = Upy2)—1 =V, and Uin o141 = 00 = Uno1 = 0(v).
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Proof. Let us consider the case when us = 6(u) first. In this case, we have
ub(u) = vy -+ vp_1w, where w is a non-empty prefix of v,. Since uf(u) is
a #-palindrome, vy -+ v,_1w = 6(w)f(vy_1)---60(v1) holds. This means that
0(vn_1)---0(vy) is a proper infix of v; - - - v,. Then we can apply Theorem 1 to
conclude 8(v,_1) = --- = 0(v;) because v is assumed to be §-primitive.

Even for the second case when us; = wu, the basic strategy is the same.
Since the border between u; and us is located on vy, /21, one can let v, /2 =
xy for some non-empty words z,y such that u; = v1---v[,/21-17 and uy =
YVU[n/2]+1 * " Un—1%, where z is a non-empty prefix of v,. Then we have vy - - - v[, /2112 =
YU[n/2]4+1 """ Un—17 because u; = uz. This equation implies that vy ---vpn/21-1
is a proper infix of v, /91 -+ - vn SO that v1 = -+ = vy 911 = v. If n > 4, we can
also determine the values of v[, /2741, - -,Vn—1. Firstly, the value of vf, 2741 is
determined to be 6(v) by applying Lemma 3 to the overlap between vivs and
U[n/2]Vn/2]+1- When n > 6, Theorem 1 is applied to that vy, 2741 vn-1
being a proper infix of vy - - V[ 21 t0 fix V[n 2141 = - = vu1 = 0(v). O

As suggested previously, an element of BCPy(u,v) is characterized by Con-
dition (3) with k& = |[v| — ged(|ul, |v]) — |ged(|ul, [v])/2] — 1. Thus, this condition
is replaced by the next condition:

cd(|ul, |v
|urugus A vy -+ Untny1| > 2Ju| + |v| — ged(Jul, [v]) — {%J -1. (4

Once this inequality proves not to hold strictly, b'(p, q) becomes a good bound
for an arbitrary pair (p, ¢). The next lemma verifies that the assumption of u,v
being -primitive is valid when we consider BCPy(u,v).

Lemma 5. Let u,v € T such that pg(u) # pe(v) and |u| > |v] > 3ged(|ul, [v]).
Unless both u and v are §-primitive, BCPy(u,v) = 0.

Proof. Here we prove its contrapositive: if BCPy(u,v) # 0, then both » and
v are @-primitive. For this purpose, suppose the non-emptiness and that u
and v were not #-primitive at the same time, and see that a contradiction is
unavoidable. Let r = pg(u), t = pg(v), d = ged(|ul, [v]), and d' = ged(|r], |t])-
It suffices to show that b(max(|r|, |[t|), min(|r|,|¢])) < b'(|ul,|v|) — 1 under this
supposition, which would lead us to the contradictive conclusion pg(u) = pg(v)
due to Theorem 4.

If min(|r|, |t|) < 2d', then by definition b(max(|r|, |t]), min(|r|, [t])) = lem(|r|, |¢]),
and we have lem([r|, [¢]) < 2max(|r|, #]) < 2[u| < b(u], |o]) — 1.

In the case min(|r|, [¢t|) > 3d', we claim that

2max(|rl, [¢]) + min(|r(, [¢]) — d' < b'(jul,|0]) — 1 (5)

holds if r # u or t # v. To prove this claim, it is worth noting that |¢t| < |u| — d
holds because |t| < |v| and |v| < |u|—d. Firstly, let us consider the case |r| > [¢|.
If r # u, then one easily obtains 2|r| + |t| — d' < 2|u| < b'(Ju|, |[v]) — 1 because
r # u means 2|r| < |u|. This inequality is exactly same as (5) when |r| > |¢|. If
r = u, then ¢t # v so that |t| < |v]|/2 < |v]| —d— |d/2] holds; the latter inequality
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follows from |v| > 3d. Thus, |t| —d' < |t| -1 < |v] —d — |d/2] — 1, and hence,
we have 2|r| + |t| — d' < b'(|ul,|v]) — 1. Conversely if |r| < |t|, then |r| < |v|
holds. Due to the inequality:

2u| + |v| — 2d < 2|u| + |v| —d - |d/2] — 1, (6)

we have 2|t|+|r| —d' < 2(Ju|—d)+ |v|—d' < 2|u|+|v|—2d < b'(|ul, |v|)—1. This
is the same as (5) when |r| < |¢|. Having proved the claim, now it suffices to note
that the left-hand side of (5) is equivalent to b(max(|r|, |¢t|), min(|r|, [¢])). O

Note that the inequality given in Eq. (6) will play a significant role through-
out this paper.

Up to now, we have seen that the combinations of the values of us, us, va, ..., vny1
have been already severely-limited under the condition (3) due to Lemma 4. We
will see in the following that some specific value of k£ in this condition further
restricts the number of possible combinations.

Proposition 4 ([8]). Letu,v € & such that v is 0-primitive, us, uz € {u,6(u)},
and va,...,v, € {v,0(v)} for some integer n > 3. If vua---v, is a prefic of
uwugus and (n — 1)|v| < 2|u| < n|v|, then there are only two cases possible:

1. us = 0(u) and vy = -+ = v, = v with uf(u) = (yz)" 'y and v = yz for
some non-empty 0-palindromes z,y; and

2. up = u, nis even, Vg = -+ = Vo = U, and Vo411 = 0 = Uy = 0(v)
with v = r(tr) (rt)"tr and u = v/~ (tr)i(rt)? for somei >0, j > 1,
and non-empty 0-palindromes r,t.

This proposition is applicable to our problem when v; --- v, is a prefix of
u1Uuu3, that is, when the border between v,, and v,,41 is at the left of the vertical
dashed line in Figure 3. Since 2|u| — (n — 1)|v| is a multiple of ged(|u], [v]), this
condition is formalized as 2|u| — (n — 1)|v| > 2gcd(|ul, |v]). This always holds
when n is odd because |u| — 251 |v| is a multiple of ged(|ul, [v]). On the contrary,
2|u|— (n—1)|v| = ged(|ul, |v]) may hold when n is even. Then v; - - - v, disagrees
with ujusus somewhere within the (| ged(Jul, |v|)/2] +1) rightmost letters of v,
as shown in the next example.

Ezample 4. Let u = abbab, v = abb, and 6 be the mirror image on {a,b}.
Then uf(u)? and v* satisfy Condition (4), with n = 4, and 2[u| — (n — 1)|v| =
ged(ful, [v]).-

Lemma 6 ([8]). Let v € I be a -primitive word, and z,y € XT be words
strictly shorter than v. For an integer k > 1, the solution to v8(v)*z = yvk+! is
characterized as v = r(tr)i(rt)tir, y = r(tr)i(rt)?, and x = (rt)**tr for some
1 >0, j > 1, and non-empty 0-palindromes r,t.

Lemma 7. Let u,v be distinct 8-primitive words with |u| > |v| > 3 ged(|ul, |v]).
If there exist an integer n, and words uy = u, uz,uz € {u,0(u)}, vi = v,
V2y.e oy Un,Unt1 € {v,0(v)} satisfying Condition (4) and 2|u| — (n — 1)jv| =
ged(|ul, |v]), then us = O(u) and vo = -+ = v, = v. Moreover, v = yx and
uf(u) = (yx)" 1y for some O-palindromes y,x € &+,

12



uz = 0(u) ug = 0(u)

Umtl = U Vamt2 = 6(v)
s IERT Ox
iiz‘@w{ 77777777777 4viyiv:yivi;
f(v)  O(v) 6(v) 0(z) ¥ ~

Figure 4: When us = 0(u) and |y| = d, vam+2 = 6(v) and the prefix 6(z)yz of
0(u) partially overlap as shown here.

Proof. Let d = ged(|ul, |v|). As mentioned previously, in order for 2|u| — (n —
1)|v| = d to hold, n has to be even. So, let n = 2(m + 1) for some m > 1.

Firstly, we investigate the case when us = 6(u). In this case, Lemma 4 fixes
all of vo,...,v2m_1 to be equal to vy, i.e., v. Then we can let

Yy (7)

for some y € Pref(vomi2). From Eq. (7) and the hypothesis of this lemma,
ly| = 2|u| — (2m + 1)|v| = d. Combining this relation and Condition (4) implies
that yus and va,, 2 share their prefix of length at least |v| — d. At any rate,
since uf(u) is a f-palindrome, Eq. (7) gives v>™*tly = 0(y)0(v)?>™*!. This
means that vy € Suff(6(v)?) because m > 1, and this suffix condition allows
us to let §(v) = zy for some x € ¥T. Substituting this back to the suffix
condition results in 6(y)0(z)y € Suff(zyxry). From this, we can easily observe
that y = 6(y) and z = 6(x). Now we have v = yz. Note that the relation
(2m + 2)|v| — 2|u| = |z| results from this equation and Eq. (7) so that z is a
f-palindrome of even length; that is, we can let x = 26(2) for some z € X7T.
Hence, v = y26(z), and by substituting this into Eq. (7), we can obtain that

urus = ub(u) = ™+

u=v"yz = (yz)"yz = (y20(2))"yz. (8)

According to this equation, the Euclidean algorithm gives d = ged(|ul, [v]) =
ged(Jv|, ly|+|z]) = ged(Jy|+ =], |2]) = ged(|z], |y|)- This equation further implies
ged(lz, ly|) = ged(2[z], [y|) = d because |y| = d.

From now on, we will prove that vs,,4+2 has to be v. Suppose not, that is,
Vamae = 6(v) = zy. Recall that yus and va,, 2 share their prefix of length at
least |z| + |y| — d. In addition, |z| + |y| — d > 2d according to the hypothesis
|v| > 3d. Thus, if |2| = d, then this common prefix immediately gives z =y, and
hence, v would be y3. This contradicts the §-primitivity of v so that z has to be
of length at least 2d. If uz = u, then yus = y(yx)™yz holds due to Eq. (8), and
hence, this common prefix implies that yyz and zy share their prefix of length
|z|+|y| —d. As seen above, ged(|z|, |y|) = d and |v| = |yz| > 3d. Thus, Lemma 2
is applicable to this common prefix, and results in p(z) = p(y). This, however,
contradicts pg(u) # pg(v), and hence, uz has to be 8(u) = 0(2)y(20(2)y)™. See
Figure 4. In this case, the common prefix between va,,42 and yus gives

20(z) = yb(2)y2' 9)
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Figure 5: If uy = u, then vjvy...v,41 overlaps with v, 11 ...v2m41 not de-
pending on the value of us.

for some 2’ € Pref(z). Eq. (9) implies that 2z’ € Suff(0(2)), i.e., 8(z') € Pref(z),
so that 2z’ = 6(2'). Eq. (9) also enables us to let z = y2z" for some 2" €
¥*. Substituting 6(z) = 6(z")y back into Eq. (9) yields 26(z) = y0(z")y?z’,
and hence, 6(z) = y?2', i.e., z = 2'y%. If |z| = 2d, then 2z’ = \; otherwise,
by replacing Eq. (9) by these, we can obtain z'y?y?z’ = yz'yz’, and hence,
2'y® = y32', which implies p(z') = p(y). However, in both cases, we reach the
contradiction with the #-primitivity of v = yz'y?y?2’.

Now we have to prove that us cannot be u. Suppose for the sake of con-
tradiction that us = u. Lemma 4 givesv; = -+ = v, = v and vy = --- =
Voam41 = 0(“) SO;

u=v"z = zb(v)™2 (10)

for some z,z,2' € X7 such that v,y1 = zz. Since m > 1, this allows us
to let v = zy for some y € Pref(6(v)) (see Figure 5). Substituting this into
Eq. (10) gives y = 6(y). Eq. (10) also gives |z| = (m + 1)|v| — |u|, and by
combining this with the hypothesis (2m + 1)|v| < 2|u| < (2m + 2)|v|, we obtain
2lz| = (2m + 2)v| — 2Ju| < |v| = |z| + |y|, and hence, |z| < |y|- As done
before, based on u = v™z and |z| = |y|, the Euclidean algorithm gives d =
ged(Jul, |v]) = ged(|z|, |y|)- Thus, || < |y| implies that |y| > 2d. With Eq. (10),
this length condition results in

(m + Dv| = [u] + || < |u| + 2] + [y| — 2d. (11)

For our purpose, it suffices to prove that v,41 can be neither v or 6(v).
Suppose first that v,,41 = 0(v) = yz. First of all, we can easily see that
z = y because v, 1 was let to be zz. Thus, Eq. (10) can be rewritten as
u = v™y. As illustrated in Figure 5, the overlap between vo,,4+1 = 6(v) and
Um+1 = 6(v) implies that x € Pref(8(v)). This implies « € Pref(y), i.e., 8(z) €
Suff(y), because 6(v) = yz and |z| < |y|- As a result, 6(z) € Suff(u), and
hence, z is a prefix of both « and 6(u). This means that v™60(v) € Pref(uus)
regardless of whether ug is u or 6(u). Note that, by the hypothesis, usus =
wug and TUm42 * * * Vam41V2m+2 share their prefix of length at least |u| + |v| —
2d. Due to Condition (11), v™8(v) € Pref(xvm4a -+ vam+2), that is, v™6(v)
is an infix of V41 - - Vam42. However, since m > 1 and v is primitive, this
contradicts Theorem 1. Thus, v,,+1 cannot be (v) so that has to be v. If
so, applying Lemma 6 to the overlap between vy - vpmy1 and Vg1 -+ Vomy1
yields v = r(tr)i(rt)"*ir and u = v™r(tr)i(rt)? for some i > 0, j > 1, and
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non-empty #-palindromes r,t. One can easily check that u? = v™+14(v)™ (rt)?
holds, and hence, |(rt)?| = d due to 2|u| — (2m + 1)|v| = d. On the contrary,
from ged(|ul,|v|) = d, the Euclidean algorithm derives ged(|r(tr)?|,|(rt)?]) = d.
However, |r(tr)!| cannot be a multiple of |(rt)’| = d because r,t # \. O

Lemma 8. Let u,v be distinct 8-primitive words with |u| > |v| > 3 ged(|ul, |v]).
If there exist an integer n, words uy,us,uz € {u,0(u)}, and v1,...,Vn,Un41 €
{v,0(v)} satisfying Condition (4), then us = us.

Proof. Let d = ged(Jul, [v|). We will consider two cases depending on whether
ug is 6(u) or u, and will prove that us has to be equal to us.

The first case is when uy = 6(u). In this case, Proposition 4 and Lemma, 7
imply that v = --- = v, = v, v = yr and uf(u) = (yz)" 'y for some
non-empty #-palindromes z,y. The Euclidean algorithm yields ged(2|ul, |v]) =
ged(Jy|, [v|) = ged(|z|, ly|), and hence, ged(|z|, |y|) is either d or 2d because
d = ged(|ul, |v|). Suppose uz = w. This means that uz starts with yz, and
hence, yz and v, share their prefix of length at least |z|+ |y| —d—|d/2] — 1.
If |z| + |y| = 2gcd(|z], |y|), then |z| = |y| = d or |z| = |y| = 2d, but indeed only
the latter is valid under the assumption |v| = |z| + |y| > 3d. This means that
the common prefix is of length at least |z| so that it implies = y, which how-
ever contradicts the -primitivity of v. Conversely, if || + |y| > 3ged(|z|, |y]),
then |a] + ly| — d— |d/2] — 1> |a| + |y| — 2d > |s] + |y| — 2gcd(|z], |y]) (here
d < ged(|z|, ly|) is used). Since vp41 is either v = yx or #(v) = zy, Lemma 2
is applicable to the common prefix to obtain p(z) = p(y). Now that we have
reached the same contradiction, we can conclude that the only possible choice
of uz is 6(u).

The next case is when us = u. Due to Proposition 4 and Lemma 7, n is even
(n=2m+ 2 for some m > 1), v =+ =Vq1 = v and Vppq2 = -+ = Vaymio =
0(v), with v = r(tr)*(rt)"*ir and u = v™r(tr)é(rt)? for some i > 0, j > 1, and
non-empty f-palindromes r,t. Then we have v™+10(v)™*t! = wu(rt)ir(rt)ir.
The Euclidean algorithm derives ged(|(rt)ir|,|(tr)?|) = d from ged(|ul, |v]) = d.
Note that [uzA(rt)'r(rt)'rvamss| = [v|—d—|d/2]—1 > |v|-2d > |v|=2|r(tr)i| =
|(tr)7] > |rt|. Consequently uz must not begin with ¢ in light of Proposition 1,
and hence, uz cannot be 6(u). O

Now we are ready to prove that b’ (p, ¢) is an improved bound for the extended
Fine and Wilf’s theorem. Recall Eq. (6), which makes it possible to distinguish
the cases in which boundary common prefixes are constructable.

Theorem 7. Let u,v € X with pg(u) # pe(v) and |u] > |v] > 3ged(|ul, |v]).
Then the length of a word in BCPy(u, v) is 2|u|+|v|—ged(Jul, |v])— |ged(|ul, |v]) /2] —
1. Moreover, BCPy(u,v) # 0 if and only if one of the following two cases holds:
for somem >1,1>0, and (o, 8) € Ty UT>, U T3 and

1. u = (af(Ba)'B)™aB, v = af(Ba)'B;
2. u = [a(Ba)i(aB)a]™a(Ba)iaB, v = a(Ba) (aB)a.
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0(u) |z +Jy| —d—[d/2] -1
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Figure 6: For an odd n, uf(u)? and v™v, 1 share the common prefix of length
2|u| + |v| — d — |d/2]| — 1, where d = ged(|ul, |v]).

us = 6(u)
6w I B R
et NS SR
1 T \\E/Y 1
: SL. l l’ Il 1
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SR 2 (=) -
Unt1 = 0(v)

Figure 7: When n is odd and |z| < |2'|, uaus and v,v,4+1 overlap as shown here.

Proof. Let d = ged(|ul,|v]) and assume that BCPy(u,v) is not empty. Then
Lemma 5 implies that both u and v are f-primitive. Since an element of
BCPy(u,v) is characterized by Condition (4), Proposition 4, Lemmas 7 and
8 leave only two cases to be investigated:

n

1. us =uz =0(u), v2 =--- = v, = v, v = yz, and ub(u) = v 'y for some

non-empty distinct #-palindromes z,y; and

2. ups = ug =u,n=2m+ 2 for somem > 1, v = -+ = V1 = v,
Umi2 =+ = Uamyz = B(v), v = r(tr)i(rt)"Hir, and u = v™r(tr)i(rt)? for
some ¢ > 0, j > 1, and non-empty distinct §-palindromes r, t.

Case 1: In this case, the parity of n matters so that we first consider the
subcase when n is odd (see Figure 6). Then the border between u; and us
splits the prefix y of v(,11)/2 into half. Hence, we can let y = 2'0(z") for some
2" € £t and u = v(» /22, The Euclidean algorithm derives ged(|2/|, |z|) = d
from ged(|ul, |v]) = d. Focus to the right of border between us and uz. The
rightmost dashed line in Figure 6, up to which ujusus agree with vive - - - V541,
is located on v,y1 because |y| = 2|2'| > 2d. Thus, the suffix z of v, is a prefix
of the prefix §(z")x of us. So, if 2’ were of length d, then due to this prefix
relation and d = ged(|2'|, |z]), £ would be a power of 8(z'), which contradicts
the #-primitivity of v. Therefore, 2’ has to be of length at least 2d. This means
that the rightmost vertical dashed line in Figure 6 is on 2’ of the prefix 6(z')x2’
of ug = 6(u), and hence, 6(z")z € Pref(zv,+1)-

In what follows, we prove that in this subcase BCPy(u,v) # 0 requires
vUnt1 = v and |2'| = 2d. For the sake of contradiction, suppose that v, were
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0(v) = z2'6(2"). Then the prefix relation just mentioned is written as
0(z")x € Pref(zz2'0(2")). (12)

First of all, |2/| > |z| has to hold because otherwise Relation (12) would
cause 6(z')z € Pref(x?), that is, p(z') = p(z) due to Proposition 1, which
contradicts the #-primitivity of v. With this condition, Relation (12) gives
x? € Pref(6(2")z). If |2'| = 2d (i.e. |z| = d), then this prefix relation would re-
sult in §(2') = 22 and lead us to the same contradiction. Otherwise (|z| > 3d),
as illustrated in Figure 7, pref|,,|_,4(2') € Pref(z6(2')). Substituting this into
the overlap between 6(z')z and xzz' implies either 6(z') € Pref(z®6(2')) if
|z| = d; or 6(2")x € Pref(x30(2')) otherwise. In the former case, 6(2') would be a
power of z, whereas in the latter case Proposition 1 would imply p(8(z")) = p(z).
At any rate, we face the contradiction against the @-primitivity of v. Conse-
quently, v,41 has to be v. Then the prefix relation 6(z')z € Pref(zvny1) is
rather equal to 6(z')x € Pref(zz'0(z')x), and we can immediately see that
0(z")x = zz'. This is a well-known conjugacy equation and can be solved as

0(z") =rt,x =r(tr)*, 2" =tr (13)

for some k > 0 and words r,t (see, e.g., [5]). The resulting equation 2z’ = tr
implies 8(z") = 6(r)8(t) and combining this with 6(z') = rt results in r = 4(r)
and t = 6(t). These r,t have to be distinct and non-empty in light of the
O-primitivity of v.

Next we prove that, under the assumption v,4+1 = v, |2’| has to be 2d.
By applying Euclidean algorithm to Eq. (13), we can obtain d = ged(|2'|, [z]) =
ged(|r], [¢])- Recall that zvp41(= 22'6(2")z) and 6(2')zz' share a prefix of length
at least |#(z')zz'| —2d. Removing the trivial common part zz' = 6(z")z from this
prefix leaves us |6(2') A2'| > |2'| —2d, that is, |[rt Atr| > |rt| —2d. Soif |2'| > 3d,
then Lemma 2 could be employed to give p(r) = p(t), which would lead us to
the contradiction with the @-primitivity of v. Having successfully proved that
|2'| = 2d, let us construct a boundary common prefix based on u and v. Based
on the presentations of z and 2’ in Eq. (13), we can see v = tr(rt)*1r and
u = v""D/2tr. Due to 2’ = 2d and d = ged(|r], |t|), we have |t| = |r| = d. By
replacing (¢,7) with (a, 8) € T1UT>UT3, we can get the first pair of presentations
of u and v shown in the statement with ¢ > 1. It is left to the readers to check
that |[uf(u)?* A o™ | =2|u| + Jv] —d - [d/2] — 1.

The second subcase of Case 1 (us = 6(u)) is when n is even. Recall that
z,y are f-palindromes. In this subcase, x can be rather written as z = 26(z)
for some z € ¥ (see Figure 8). As done before, one can obtain ged(|y|, |z]) = d
from ged(|ul,|v]) = d. The overlap between v, and us gives z = 6(z). Note
that vpUny1 = y¥22vns1 and yus = yzyz? share their prefix of length at least
ly| + |z| + |y| —d — |d/2] — 1. Hence, after reducing their common prefix yz,
still 2v,,41 and yz? share their prefix of length at least |y| + |2| — 2d. Since
Unt1 € {y,2}7, if |yz| > 3d, then due to Lemma 2 this common prefix would
give p(y) = p(z) and we have reached the contradiction. Thus, yz has to be of
length 2d, i.e., |y| = |2| = d. Then by replacing (y, 2) with (a, 8) € Ty UT, UT3,
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0(u) |z +Jy| —d—[d/2] -1

0(v)  6(v) 6(v) uz = 0(u)
Figure 8: For an even n, uf(u)? and v"v,; share the common prefix of length
2|lu| + |v| — d — |d/2], where d = ged(|ul, |v])-

we obtain the first pair of presentations of u, v in the statement with ¢ = 0. The
boundary common prefix based on v and v is constructed in the same manner
as previous case.

(Case 2): Let us remind ourselves of the case: “uy = uz = u, n = 2m + 2
for some m > 1, v2 = -+ = Uyl = U, Umga = -+ = Vgmya = O0(v), v =
r(tr)i(rt)Hir, and u = v™r(tr)t(rt)? for some i > 0, j > 1, and non-empty
distinct #-palindromes r,t”. Note that the following equations hold:

u? = ™)™ (rt)?, (14)
u? = ™)™ (tr) o™ e (tr)E (rt). (15)
Due to Lemma 7, if 2|u| — (2m + 1)|v| = d, then us = 6(u). Since now we

assume that up = w, 2|u| — (2m + 1)|v| > 2d must hold. Combining this
with Eq. (14) implies |(rt)?| > 2d. With Eq. (15), this gives |(tr)? A vamis| >
|(tr)?| — d — |d/2] — 1. Note that va,,+3 begins with r regardless of whether it
is v or 6(v).

The Euclidean algorithm derives ged(|r(tr)¢], |(¢7)7|) = d from ged(|ul, |v]) =
d. Let |(tr)?| = kd for some k > 2. Here we shall see that unless j =
1, we could not avoid a contradiction. Suppose j > 2. If & > 4, then
ltr] < |(tr)?| < |(tr)?| — 2d. Thus, |(¢tr)? A vamys| > |tr|, and Proposi-
tion 1 is applicable to this overlap to yield p(r) = p(t). However, this con-
tradicts the #-primitivity of v. The same argument works for £ = 3 and
j >3 Ifk=3andj = 2, then |trtr| = 3d. The Euclidean algorithm
gives either ged(|r|,2|t]) = d (if ¢ is even) or ged(2|r|,|t]) = d (otherwise).
Combining these with [trir| = 3d gives either |r| = 2|t| = d (if ¢ is even) or
2|r| = |t| = d (otherwise). The overlap between (tr)? and vam43 is of length
at least d, which is long enough to get » = t2? (if i is even) or t = r? (oth-
erwise.) In either case, we cannot accept such a conclusion in light of the 6-
primitivity of v. As a result, the remaining case is k = 2, i.e., |(tr)?| = 2d.
Then ged(|r(tr)i|,|(tr)?|) = d gives ged(|r(tr)? ™ed 4], |(tr)/]) = d, and fur-
ther ged(|r(tr)? ™od 7|, |(tr)(-imed )—1¢|) = d. This means that |r(tr)? 47| =
|(tr)(=imodj)=1¢| = d because they are properly shorter than |(tr)?| = 2d. This
further implies ¢ mod j = (—i mod j) — 1 and |r| = |¢|. Hence, j has to be odd,
i.e., j > 3. With the non-emptiness of r and ¢, |(tr)?| = 2d now implies d > 3.
As a result, |(t7)7 Avamis| =d — |d/2] —1>d/j = |t| = |r|, and thus t = r,
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the same contradiction.

Consequently, the only one possible value of j which may create a bound-
ary common prefix is 1. Then the Euclidean algorithm yields ged(|r|, |t]) = d
from ged(|r(tr)f], |tr|]) = d. If |tr| > 3d, then |tr A vames| > |tr| — 2d and
the contradictory result p(r) = p(t) would be obtained by Lemma 2. Thus,
only the case [tr| = 2d, that is, |[t| = |r| = d remains valid. Actually in
this case, substituting (a,8) € Ty U T U T3 for (r,t) results in the second
pair of presentations of (u,v) in the statement. One can easily check that
|ud Av™ L O(v)™Ha| = 2|u|+|v| —d—|d/2] — 1; note that « is a prefix of Va3
not depending on whether it is v or 8(v). O

Corollary 2. |[BCPy(u,v)| < 1 for any u,v € Tt with pg(u) # pe(v) and
|uf > |v] = 3ged(Jul, [v])-

Proof. As shown in the proof of Theorem 7, once u and v are given in one of
the presentations present there, there is only one way to construct an element
of BCPy(u,v). Furthermore, v is of length ged(|ul, |v|) times an odd number in
the first presentation, whereas is of length ged(|ul, [v|) times an even number in
the second one. O

3.3 The improved bound and its optimality

Combining Proposition 2 and Theorem 7 completes our proof of the improved
bound for the extended Fine and Wilf’s theorem.

Theorem 8. Let u,v € 1 with |u| > |v| > 2ged(|ul, [v]). If a 6-power of u
and a O-power of v share a prefiz of length b'(|ul, |v|), then po(u) = po(v).

As opposed to the result mentioned in Theorem 5, b'(p, ¢) is not optimal for
all (p, q) with p > ¢ > 3 gcd(p, ¢). The presentations of u,v given in Theorem 7
make it possible to distinguish the non-optimal cases from the optimal cases.

Corollary 3. For p,q with d = ged(p,q) and p > q > 3d, V' (p, q) is optimal for
(p,q) if and only if (p/d,q/d) is either (m(2i 4+ 3) +2,2i + 3) or (4m(i +1) +
2i+3,4(i + 1)) for somem > 1 and i > 0.

Recall that the bound given by the classical Fine and Wilf’s theorem is
strongly optimal, i.e., for an arbitrary pair (p, ¢), there exists a word of length p+
g—gcd(p, g) —1 with periods p, ¢ but without ged(p, ¢) as its period; furthermore
if p and ¢ are coprime, then such a word is unique up to letter renaming. In
contrast, the bound b'(p, q) is not strongly optimal. Indeed, Corollary 3 says
that there do not exist u,v of respective lengths 9,5 with BCPgy(u,v) # 0.
On the other hand, we can obtain an analogous result about the uniqueness
of boundary common prefixes based on words of coprime lengths up to letter-
renaming. For this purpose, let us construct all the boundary common prefixes
according to Theorem 7 as well as its proof. The first presentation of u, v in this
theorem is u = (aB(Ba)!B)™aB and v = aB(Ba)iB for some m > 1, i > 0, and
(a,8) € Ty UT> U T3. The proof of this theorem says that the only boundary
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common prefix which can be generated based on u and v is the maximal common
prefix between uf(u)? and v™v, 1, which is:

(aB(Ba)'B)* ™+ apz, (16)

where 2z is the maximal common prefix between o and § (see the definition of
T1,T5,Ts). In the similar fashion, for the second presentation in the theorem u =
(a(Ba)'(aB) )™ a(Ba) af and v = a(Ba)'(aB) ' a, u Ao T1O(v) ™ vam s
is the only boundary common prefix constructable from u and v, and it is:

(a(Ba) (@p)* o)™ (a(Ba) T (af) ) e, (17)

where z is the maximal common prefix between o and 3. Note that both
presentations of u,v admit that ged(|ul|, [v|) = ged(lal,|8]) = |a| = |B] due to
the Euclidean algorithm. Therefore, all the boundary common prefixes which
verify the optimality of b'(p, ¢) for all the coprime pairs (p, q) for which b'(p, q)
is optimal can be obtained by choosing (a, £) in Eq. (16) and in Eq. (17) from

ExID)N(TLUT2UTs) = {(a,b) | a,b€ E,a #b,a=60(a),b=0(b)}.

Consequently, for pairs of coprime integers, the next result holds, which is anal-
ogous to the uniqueness result just mentioned.

Corollary 4. Let (p,q) be a pair of coprime integers with p > q. Then all the
boundary common prefives based on words of respective lengths p,q are equal up
to renaming.

Note that this uniqueness result does not hold any more once the coprime
assumption is taken out. This is because the choice of z in Eq. (16) and in
Eq. (17) is arbitrary and also even if ged(p, g) = 2, there are two choices about
(a, B) from Ty or from T3.

We conclude this section by defining two respective sets of boundary common
prefixes thus obtained from Eq. (16) and Eq. (17) by limiting the choice of (a, 5)
only from (X x X)N(T1UT>UT3). Due to the uniqueness mentioned in Corollary 4,
we can set a = a and § = b without loss of generality. As such, these sets are
rather defined as:

Se = {(ab(ba)'b)>™ tab|i>0,m > 1}
Se = {(a(ba)i(ab)*'a)™* (a(ba)™ ! (ab)ia)™ ! |i > 0,m > 1}.

The aim of the next section is to discuss the relationship between the words in
So U S. and Sturmian words.

4 Sturmian words

It is known that for an arbitrary pair of integers (p,q) with p > ¢ > ged(p, q),
there is a word of length p + ¢ — ged(p, ¢) — 1 which has p, ¢ as its periods but
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ged(p, q) is not its period, and hence, the bound p + ¢ — ged(p, q) for the Fine
and Wilf’s theorem is strongly optimal. Furthermore, all of these words can
be constructed based on a (binary) word with two coprime periods p, ¢ whose
length is p + ¢ — 2. It is known that the set of all such basic words, denoted by
PER, is closely related to Sturmian words. (Infinite) Sturmian words are (one-
sided) infinite words which are not ultimately-periodic, and whose number of
factors of length n is minimal (n + 1) for any n > 1. Finite Sturmian words are
any factors of an infinite Sturmian word. Let St be the set of finite Sturmian
words. By F(w) we denote the set of all infixes (factors) of w and we can
extend this notation to the set of words L as F(L) = U,y F(w). de Luca
and Mignosi proved in [11] that St = F(PER), that is, a binary word with two
coprime periods whose length is the sum of these two periods minus 2 is a finite
Sturmian word.

The aim of this section is to characterize S, and S, which correspond to
PER for the optimal bound of Fine and Wilf’s theorem, by finite Sturmian
words.

A finite Sturmian word is called standard if it appears as an intermediate
product (see Definition 1) when constructing an infinite Sturmian word using a
procedure called standard method.

Definition 1 ([11]). Let ¥ = {a,b}. The infinite sequence of pairs of words
(An, Bn), n > 0, is constructed in the following manner. Set (Ao, By) = (a, b).
For any n > 0, the pair (4,41, Bn41) is obtained from (A4, B,) by using one
of the following two rules:

1. (An-{-l)Bn—{-l) = (AnaAan)7 or
2. (An-i-l:Bn-i-l) = (BnAnaBn)-
The elements of {A,, B, | n > 0} are the standard finite Sturmian words.

A property, called R in [11], plays an important role here. A word w € ¥+
is said to satisfy R if there exist palindromes z, ¥, z such that w = zab = zy. It
was proved that a word with the property R is a standard Sturmian word.

Proposition 5 ([11]). If a word has the property R, then it is a standard
Sturmian word.

Lemma 9. For a word w in S, the words wab and wba satisfy R.

Proof. Let w = ((ab)ta(ab)**ta)™*!(a(ba)*a(ba)?)™*! for some i > 0 and
m > 1. Since any word in S, is a palindrome, it is enough, for our purpose, to
show that wab is a product of two palindromes. In fact, wab can be split into
((ab)ia(ab)tta)™*ta(ba)! and baa(ba)(a(ba)*t'a(ba)?)™ab, which are palin-
dromes. Thus, wab satisfies R. In the same fashion, wba = ((ab)ia(ab)**t'a)™ (ab)'a-
(ab)*a(a(ba)*a(ba)’)™ba, and hence, wha satisfies R. O

Corollary 5. For a word w in Se, wab and wba are standard Sturmian words.
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Thus, we can see that all words in S, are finite Sturmian words. Combining
Lemma 9 with the following result obtained in [11], which relates a word with
the property R with PER, we can obtain a stronger result than this.

Lemma 10 ([11]). Let u = zab = zy for some palindromes z,y, z. If z contains
at least two letters, then z has the periods p = || +2 and ¢ = |y| — 2 such that

ged(p,q) = 1.
Corollary 6. S, C PER.

Having considered Se, now we turn our attention to S,. In a similar manner
as above, we can prove that any element of S, is a finite Sturmian word.

Lemma 11. For a word w in S,, there exists a word u € ¥t such that uw has
the property R.

Proof. Let w = (ab(ba)ib)™ab for some i > 0 and m > 1. When i = 0, let
u = bb. Then uw = bb(abb)™ab. Since bb(abb)™ is a palindrome and vw can be
written as a product of b and (bab)™*!, uw satisfies R.

When i > 1, let u = (ba)* b so that uw = (ba)*~1b(abba(ba)"*b)™ab. Note
that uw has as prefix of length |uw|—2 a §-palindrome, and of length |uw|—2, and
it can be split into two palindromes (ba)®~'bab and ba(ba)*~1b(abba(ba)*~1b)™Lab.
Thus, we can say that uw has the property R. O

Corollary 7. Words in S, are finite Sturmian words.

Now we know that all the words in S, U S, are finite Sturmian words. We
shall differentiate these two sets with respect to PER. Recall that any element of
Se is included in PER (Corollary 6). On the contrary, S, and PER are disjoint.
This is because an element of PER has been proved to be a palindrome [11],
while any element of S, is not.

Proposition 6. S, NPER = {.

To summarize this discussion, Figure 9 clarifies the inclusion relations among
the set of finite Sturmian words, PER, S, and S,. Due to the fact that a factor
of a word in St also belongs to St, St DO F(S. US,) holds, but this inclusion
relation is in fact proper. For instance, a word aaabaaaabaaa is of length 12
and has two periods 9 and 5 while ged(9, 5) is not its period. Hence, this word
is in PER C St, while it is not in F(Se U S,) because no word in Se U S, has a
continuous run of the same four letters as its infix. Moreover, the infix baaaab
of this example word shows PER U (Se US,) C St. For the reason mentioned
above, it is clear that baaaab € F(PER) but baaaab ¢ S. US,. In addition,
baaaab has only one period which is strictly smaller than its length, and hence,
baaaab ¢ PER.

22



St = F(PER)

PER S.US,

Figure 9: The set St of finite Sturmian words, PER, S., and S,

5 Concluding remarks

In this paper, we improved the bound for the extension of the Fine and Wilf’s
theorem of [9] from b(p,q) to b'(p,q) = b(p,q) — |ged(p,q)/2]|. The complete
characterization of boundary common prefixes given here allows us to distinguish
the case when this improved bound is optimal in terms of the lengths of given
words. In particular, this improved bound is optimal for any (p,q) with p > ¢ =
2gcd(p,q). We also discussed the relationship between finite Sturmian words
and the boundary common prefixes.

One open case is finding optimal bound for a pair (p,q) with d = ged(p, q)
and p > ¢ > 3d, for which the improved bound ¥'(p,q) = 2p+q—d — |d/2] is
not optimal due to Corollary 3. Note that for such (p, ¢), the bound b'(p,q) — 1
remains good, while in Section 3.2, 2p + [d/2] — 1 was proved not to be good.
Thus, the optimal bound for such (p, q) exists between 2p+[d/2] and b’ (p, ¢) — 1.

References

[1] J. Berstel and L. Boasson. Partial words and a theorem of Fine and Wilf.
Theoretical Computer Science, 218(1):135-141, 1999.

[2] F. Blanchet-Sadri and R. A. Hegstrom. Partial words and a theorem of
Fine and Wilf revisted. Theoretical Computer Science, 270:401-419, 2002.

[3] M. Gabriella Castelli, F. Mignosi, and A. Restivo. Fine and Wilf’s theo-
rem for three periods and a generalization of Sturmian words. Theoretical
Computer Science, 218(1):83-94, 1999.

[4] S. Cautis, F. Mignosi, J. Shallit, M.-w. Wang, and Soroosh Yazdani. Peri-
odicity, morphisms, and matrices. Theoretical Computer Science, 295:107—
121, 2003.

23



[6] C. Choffrut and J. Karhuméiki. Combinatorics of words. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 1, pages
329-438. Springer-Verlag, Berlin-Heidelberg-New York, 1997.

[6] S. Constantinescu and L. Ilie. Generalized Fine and Wilf’s theorem for
arbitrary number of periods. Theoretical Computer Science, 339(1):49-60,
2005.

[7] S. Constantinescu and L. Tlie. Fine and Wilf’s theorem for Abelian periods.
Bulletin of the EATCS, 89:167-170, June 2006.

[8] E. Czeizler, E. Czeizler, L. Kari, and S. Seki. An extension of the Lyn-
don Schiitzenberger result to pseudoperiodic words. In V. Diekert and
D. Nowotka, editors, Proc. DLT09, volume LNCS 5583 of Lecture Notes in
Computer Science, pages 183-194, Berlin, 2009. Springer-Verlag.

[9] E. Czeizler, L. Kari, and S. Seki. On a special class of primitive words.
Theoretical Computer Science, 411(3):617-630, 2010.

[10] A. de Luca and A. De Luca. Pseudopalindrome closure operators in free
monoids. Theoretical Computer Science, 362:282-300, 2006.

[11] A. de Luca and F. Mignosi. Some combinatorial properties of Sturmian
words. Theoretical Computer Science, 136:361-385, 1994.

[12] N. J. Fine and H. S. Wilf. Uniqueness theorem for periodic functions. Pro-
ceedings of the American Mathematical Society, 16(1):109-114, February
1965.

[13] J. Justin. On a paper by Castelli, Mignosi, Restivo. RAIRO - Theoretical
Informatics and Applications, 34:373-377, 2000.

[14] L. Kari, B. Masson, and S. Seki. Properties of pseudo-
primitive words and their applications. Submitted, available at
http://hal.archives-ouvertes.fr/hal-00458695/fr/, 2009.

[15] F. Mignosi, A. Restivo, and P. V. Silva. On Fine and Wilf’s theorem for
bidimensional words. Theoretical Computer Science, 292:245-262, 2003.

24



