
Biocomputing: An Application for
Micro-arrays?

Lila Kar i

D e p a r t m e n t of C o m p u t e r Science

Univers i ty of Wes te rn On ta r i o

London , ON, C a n a d a , N 6 A 5B7

li la@csd.uwo.ca, h t t p : / / w w w . c s d . u w o . c a / - lila

Biocomputing, known also under the
names of biomolecular computing, molecular
computing and DNA computing, is a novel
and fascinating development at the inter-
face of computer science, mathematics, and
molecular biology. It has emerged in recent
years, not simply as an exciting technology
for information processing, but also as a cat-
alyst for knowledge transfer between infor-
mation processing, nanotechnology, and biol-
ogy. This area of research has the potential to
change our understanding of the theory and
practice of computing z.

The main idea behind DNA computing is
that DNA strands can be used to encode data
and molecular biology techniques can be used
to perform computations on that data.

Indeed, a (single-stranded) DNA strand
can be viewed as a linear arrangement of four
different building blocks, or bases: adenine,
guanine, cytosine and thymine. In other
words, a DNA strand can be thought of as a
word over a four-letter alphabet, {A, C, G, T}
where two of the letters are complementary of
the others. Indeed, A is the complement of
T and C is the complement of G, and two
complementary DNA single strands of op-
posite directionality will bind to each other
to form a double-stranded DNA strand with

1See http://www.lcnc.nl/dna6/.

is well-known helical shape. From the com-
putational/informational point of view, this
all amounts to the fact that we haw~ at our
disposal four symbols to encode information,
which is more than sufficient considering that
two bits, 0 and 1, suffice for the saJme pur-
pose on an electronic computer. As synthe-
sising a desired DNA strand is nowadays a
routine procedure in molecular biology, we
could think, for example, of a fictitious en-
coding of the letters of the English alphabet
as A = A C A , B = A C C A , C = A C C C A ,
D -- A C C C C A , the n t h letter -- A C n A , and
utilise this encoding to write any English text
as a DNA strand. There are many reasons
why this particular example would not work
in practice, but it is an illustration of the fact
that one could represent, with a suitable en-
coding, textual, numerical and symbolical in-
formation as DNA strands.

After encoding the information in DNA
strands, one can use molecular biology lab
techniques to perform operations. The so-
called bio-operat ions that have so far been
used for computations are:

- synthesis of a desired DNA strand;

- union: pour together the DNA (in solu-
tion) of two test tubes into a third one;

10

- separation of DNA strands by length
from a given heterogeneous solution by using
a technique called gel electrophoresis;

- "melting" of a double DNA strand into
its constituent single strands and its oppo-
site, "annealing" which amounts to binding
together two complementary single strands
with opposite orientation to form the corre-
sponding double strand;

- separation, from a heterogeneous solu-
tion of DNA single strands, of those that con-
tain a certain pattern as a subsequence, by
using a technique called affinity separation;

- making copies of a given DNA strand by
using PCR (Polymerase Chain Reaction);

- cutting a DNA double-strand at a spe-
cific location by using restriction enzymes;

- pasting together DNA strands with com-
patible "sticky-ends" by using DNA ligases;

- "reading out" or sequencing the letters
of a DNA strand from a homogeneous solu-
tion, i.e. from a solution that contains mainly
many copies of the same strand.

These bio-operations and combinations of
them have been used to solve computational
problems where the input to the problem is
encoded as a collection of DNA strands, usu-
ally with many copies of each strand present
in the solution, and the computation consists
of a sequence of bio-operations. The out-
put is a DNA solution which is ultimately
sequenced to find out the answer.

The first attempt of solving a computa-
tional problem using DNA computing was
Len Adleman's, [1], who reported the results
of an experiment solving a 7- node instance
of the Directed Hamiltonian Problem using
only bio-operations. The Directed Hamilto-
nian Path Problem has as input a directed
graph, and two designated nodes, "in" and
"out". The question is whether this graph
has a Hamiltonian Path, i.e. a path that
starts at the "in" node, ends at the "out"
node and enters every other node exactly
once. Adleman's solution consisted in en-
coding each node as a 20-letter DNA sin-

gle strand and then encoding the directed
edges between nodes as follows: the edge ij
was a strand consisting of the 2nd part of
the strand encoding node i and the first half
of the strand encoding node j . By this in-
genious encoding scheme, when putting to-
gether in a test tube all strands that encoded
for edges and all complement of strands en-
coding nodes, all possible paths through the
graph were formed by the property of an-
nealing of complementary strands. Indeed,
the strand encoding for the edge ij would,
by construction, bind to both the comple-
ment of strand i (in its first half) and to
the strand representing the node j (in its sec-
ond half). After all the possible candidates
to the Hamiltonian Path were generated by
self-assembly of DNA strands, by using suc-
cessively some of the above mentioned bio-
operations, the paths that were not Hamilto-
nian were eliminated.

Following Adleman's experiment, other
experiments were proposed for solving vari-
ous computational problems with DNA. For
example, in [17] Lipton proposed a DNA al-
gorithm for solving the Satisfiability Prob-
lem and other NP-complete problems. This
started one of the directions in DNA comput-
ing research, that of building special purpose
computers. A special purpose computer is a
device that serves to solve efficiently a par-
ticular problem or class of problems. Much
of the experimental research in DNA comput-
ing has been of this application-oriented type.
Experiments using DNA molecules to solve
computational problems that have actually
been carried out in the laboratory include
the Travelling Salesman Problem [1], [2], the
Maximal Clique Problem [23], the Satisfia-
bility Problem [18], [26], [22], the Knights'
Problem [27], the Royal Road Problem [6],
encryption and data security [3], etc. Each
of these experiments is a step towards the de-
sign of a DNA-based device that would out-
perform its electronic counterpart for a spe-

11

cific application.
While special purpose DNA computers

could provide a tailor-made solution for each
particular application, a general purpose
computer is a more ambitious project: a uni-
versal device capable of running any program
and thus of solving any problem.

Theoretical studies, [8], [11], [10], [24],
[25], have proved that the existing formal
models of DNA computation are equivalent
in computational power to Turing machines
(the widely accepted formal model of elec-
tronic computers). This shows that, in
principle, it is possible to design and build
a DNA-based programmable computer, and
that none of the existing practical obstacles
is insurmountable.

Experimental research also has been di-
rected towards investigating which tools from
the molecular biologist's tool-chest are best
suited for computational applications. The
search for the optimal basic instructions of a
future high-level molecular programming lan-
guage include DNA-based addition of binary
numbers [7] and computing DNA tiles that
self-assemble [301, [201 .

Lastly, another research direction is the
study of DNA computing in vivo. The
model developed by Landweber and Kari in
[16], [14] for the guided homologous recom-
binations that take place during gene un-
scrambling proved to have the computational
power of a Turing machine. This indicates
that, in principle, these unicellular organisms
may have the capacity to perform at least
any computation carried out by an electronic
computer. Moreover, this opens the possibil-
ity of envisaging a programmable cell which
could be used for a variety of computational
and medical purposes.

Weiss et al. [28] present another approach
to in vivo computation by proposing a map-
ping from digital logic circuits to genetic reg-
ulatory networks with the following property:
the chemical activity of such a genetic net-
work in vivo implements the computation

specified by the corresponding digital circuit.

In [29] the authors undertake a biological
implementation of cell to cell communication.
This work demonstrates the construction and
testing of engineered genetic circuits which
exhibit the ability to send a controlled sig-
nal from one cell, diffuse that signal through
the intercellular medium, receive that signal
within a second cell, and activate a remote
transcriptional response.

In combination with other ongoing work
in gene circuits [5], [4], [21], [12] the approach
in [28], [29] provides components for a biolog-
ical substrate for expressing pattern forma-
tion and for engineering with living organ-
isms.

While most approaches deal with bio-
computations that happen in a test-tube,
the Madison team, [18], uses a surface-
based approach based on DNA microarrays.
The argument for using this approach is
that all the solution-based methods share
problems of scale-up for a number of rea-
sons, including poor efficiencies in the pu-
rification and separation steps. In contrast,
the surface-based computations manipulate
strands that are immobilised on a surface us-
ing chemical linkers. This implies that at
least one of the operations used in solution-
based computing, that of selectively sepa-
rating strands in different test-tubes, can-
not be performed. As the surface-based ap-
proach is two-dimensional rather that three-
dimensional, the number of DNA strands
is limited to roughly 1012 per square cen-
timeter, [19]. Nevertheless, this approach
might gain in efficiency where it loses in data-
compression, and a demonstration ot! solving
an instance of a SAT problem has been re-
ported in [19]. The surface-based comput-
ing uses three basic operations, MARK, UN-
MARK and DESTROY [19]. In the MARK
operation, a combinatorial mixture of DNA
corresponding to the query would be added
to the surface and complementary strands

12

would bind: the marked strands would be
duplexed while the unmarked ones would re-
main single-stranded. The DESTROY oper-
ation consists of adding an exonuclease spe-
cific for single-stranded DNA. Thus, every
unmarked strand is destroyed, leaving on the
surface only the MARKED DNA molecules.
The UNMARK operation consists of subject-
ing the surface to conditions under which hy-
brids dissociate into single strands. Subse-
quent washing removes the free strands and
regenerates the DNA modified surface.

After each cycle, fewer molecules remain
on the surface. Repeated queries consti-
tute the computation process, permitting
subsets of the initial combinatorial solution
space to be eliminated, and leaving the de- [1]
sired solution to the problem of interest.
The READOUT operation consists of deter-
mining the sequence(s) of the surface-bound
DNA molecules that remained. Both con-
ventional gel-electrophoresis-based sequenc-
ing and hybridisation to word-specific ad- [3]
dressed arrays have been studied [19].

The surface-based approach has recently
been adopted also for the DNA implemen-
tation of successive state transitions, [13] as [4]
immobilising strands on a surface minimised
the intermolecular reactions.

Besides the novelty of the approach, and
in spite of the technical difficulties that arise [5]
from the error rates of bio-operations, there
are several potential advantages to DNA
computing over electronic computing. These [6] include massive parallelism, memory capac-
ity, and power requirements [10].

Indeed, due to its massive parallelism, a
DNA computer could be between a thousand
times and a million times faster than an elec-
tronic computer. Moreover, to encode the [7]
same information that can be stored in a
micro-Mole of DNA (a dilute solution that
fits in a 1 litre milk carton) using the cur-
rent IBM technology, one would need a sur- [8]
face of 160 hectares. Concerning the power
requirements, a DNA computer could be at

least 1000 times more energy efficient than an
electronic one. The comparisons above, while
based on preliminary data, give a glimpse
into why bio-molecules might be a preferred
medium for computations in some applica-
tions. It is envisaged that in-vitro and in-
vivo DNA computing research are prelimi-
nary steps that may ultimately lead to mak-
ing DNA computing a viable complementary
tool for computation and provide more in-
sight into the computational capabilities of
living organisms.

R e f e r e n c e s

Adleman, L. M. Molecular computation
of solutions to combinatorial problems.
Science 266(1994), 1021-1024.

[2] Adleman, L.M., Computing with DNA.
Scientific American, 279(1998), 54-61.

Clelland, C.T., Risca, V., Bancroft, C.
Hiding messages in DNA microdots. Na-
ture, 399(1999), 533-534.

Elowitz, M., Leibler, S., A synthetic os-
cillatory network of transcriptional reg-
ulators. Nature, 403(2000), 335-338.

Gardner, T., Cantor R., Collins, J. Con-
struction of a genetic togle switch in Es-
terichia coll. Nature, 403(2000), 339-342.

Goode, E., Wood, D.H., Chert, J.
DNA implementation of royal road fit-
ness evaluation. Proceedings of the DNA
based computers 6, Leiden, The Nether-
lands, 223-237.

Guarnieri F., Fliss M., Bancroft C.,
Making DNA add. Science 273(1996),
220-223.

Head, T. Formal language theory and
DNA: an analysis of the generative ca-
pacity of recombinant behaviors. Bul-

13

letin of Mathematical Biology, 49(1987)
737-759.

[9] Kari, L., DNA computing in vitro and
in vivo. In Future generation computer
systems, Elsevier Science. In press.

[10] Karl, L. DNA computing: arrival of bio-
logical mathematics. The Mathematical
Intelligencer, vol.19, nr.2, Spring 1997,
9-22.

[11] Karl, L., and Thierrin, G. Contextual
insertions/deletions and computability.
Information and Computation, vol.131,
1(1996), 47-61.

[12] Knight T., Jr., and Sussman, G.J. Cel-
lular gate technology. 1st International
Conference on Unconventional Models
of Computation, C.S. Calude, J.Casti,
M.J. Dinneen, eds., Springer Verlag,
1998, 257-272.

[13] Komiya, K., Sakamoto, K., Gouzu, H.,
Yokoyama, S., Arita, M., Nishikawa, A.,
Hagiya, M. Successive state transitions
with I/O interface by molecules. Pro-
ceedings of the DNA based computers 6,
Leiden, The Netherlands, 21-30.

[14] Landweber, L.F. and Karl, L., The evo-
lution of cellular computing: nature's
solution to a computational problem.
Biosystems, L.Kari, H.Rubin, D.Wood
Eds, vol.52, Nos.l-3, 1999, Elsevier, Am-
sterdam, 3-13.

[15] Landweber, L.F., Kuo, T.C. and Curtis,
E.A. Evolution and assembly of an ex-
tremely scrambled gene. PNAS, vol.97,
no.7(2000), 3928-3303.

[16] Landweber, L.F. and Kari, L. Uni-
versal molecular computation in cil-
iates. In Evolution as Computation,
L.Landweber, E,Winfree, Eds., Springer
Verlag, 2000.

[17] Lipton, R.J. DNA solution of hard com-
putational problems. Science, vol.268,
April 1995, 542-545.

[18] Liu Q., Wang L., Frutos A.G., Condon
A., Corn R.M., Smith L.M. DNA com-
puting on surfaces. Nature 403(12000),
175-179.

[19] Liu, Q. et al. Progress toward demon-
stration of a surface based DNA com-
putation: a one word approach to solve
a model satisfiability problem. Biosys-
terns, Elsevier, 52(1999), 25-33.

[20] Mao, C., Sun, W., Shen, Z., Seeman,
N.C. A nanomehanical device bssed on
the B-Z transition of DNA. Nature,
397(1999), 144-146.

[21] McAdams, H.H. and Arkin, A. Simula-
tion of prokaryotic genetic circuits. Ann.
Rev. Biophys.Biomol.Struc., 27(1998),
199-224.

[22] Ogihara, M., Ray, A. Molecular compu-
tation: DNA computing on a chip. Na-
ture 403(2000), 143-144.

[23] Ouyang Q., Kaplan P.D., Liu S., Libch-
aber A., 1997. DNA solution of the max-
imal clique problem. Science 278(1997),
446-449.

[24] Paun, G. On the splicing operation.
Discrete Applied Mathematics, 70 (1996),
57-79.

[25] Paun, G. On the power of the splic-
ing operation. International Journal of
Computer Mathematics, 59(1995), 27-
35.

[26] Sakamoto K, Gouzu H, Komiya K, Kiga
D, Yokoyama S, Yokomori T, Hagiya M.,
Molecular computation by DNA hair-
pin formation. Science 288(2000), 1223-
1226.

14

[27] Seife C. Molecular computing. RNA
works out knight moves. Science
287(2000), 1182-1183.

[28] Weiss, R., Homsy, G.E., Knight,
T.F. Jr., Towards in vivo digital
circuits. In Evolution as Computa-
tion, L.F.Landweber, E.Winfree, Eds,
Springer Verlag, 2000.

[29] Weiss, R., Knight, T.F. Jr., Engineered

communication for microbial robotics.
Proceedings of the 6th International
Meeting of DNA based computers, Lei-
den, The Netherlands, June 13-17, 2000,
5-19.

[30] Winfree, E., Liu F., Wenzler L.A., See-
man N.C. Design and self-assembly of
two-dimensional DNA crystals. Nature,
394 (1998), 539-544.

15

