
Theoretical Computer Science () –

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Relativized codes
Mark Daley a, Helmut Jürgensen a,∗, Lila Kari a, Kalpana Mahalingam b

a Department of Computer Science, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
b Department of Mathematics, IIT Madras, Chennai, 600 036, India

a b s t r a c t

A code C over an alphabet Σ is a set of words such that every word in C+ has a unique
factorization over C , that is, a unique C-decoding. When not all words in C+ appear as
messages, a weaker notion of unique factorization can be used. Thus we consider codes C
relative to a given set of messages L, such that each word in L has a unique C-decoding. We
extend this idea of relativizing code concepts to restricted message spaces.

In general terms, from a predicate P defining a class of codes, P-codes, we derive a
relativized version of such codes, P-codes relative to a given language L. In essence, C ⊆ Σ+

is a P-code relative to L ⊆ Σ+ if P is true on its domain restricted to L. This systematic
approach leads to the relativization of the definitions of many classes of codes, including
prefix, suffix, bifix and solid codes. It can also be applied to certain classes of languages,
like overlap-free languages, which are not codes, but which can be defined using a similar
logical framework.

In this paper, we explore the mechanism of this relativization and compare it to other
existing methods for relativizing code properties to restricted message spaces.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Codes are formal languages with special combinatorial and structural properties which are exploited in information
processing and information transmission. The well-known model of information transmission consists of a source S with
source alphabet Σ sending information to a recipient R with receiver alphabet ∆ via a channel by encoding the messages
with an encoder γ . In the sequel, by encoding we mean homomorphic encoding. The set C = γ (Σ) is a set of codewords
called the code of γ . The code C is usually required to have the property of unique decodability, that is, every word in C+
should be uniquely decodable as a concatenation of words in C . Abstracting from this scenario, any uniquely decodable
non-empty set C of non-empty words over ∆ is called a code. Beyond the basic requirement of unique decodability, other
properties of codes are relevant depending on the situation at hand: decoding delay, synchronization delay, error-resistance,
error-recovery, error-correction, etc. A survey regarding the hierarchy of classes of codes is presented in [9]. In addition to [9],
we refer to [1,13,15] for relevant information on codes.

Usually, not every word over the receiver alphabet will occur as an output of S. For example, if S is an author writing
English prose, the word (xyz)1000000 is not likely to be one of the best-selling novels. For simplification, messages with a very
low probability of being issued by S are considered as impossible in the sequel, leaving the set L of possible output messages
to be considered. If only messages in L are encoded, then properties like unique decodability etc. need only be considered
with respect to L. Thus, code properties can be relativized to L and preserved, even if the original set C is itself not a code. To
our knowledge, this idea was first introduced in [4] and pursued further in [5–7]. In particular, the potential of such codes

∗ Corresponding author.
E-mail addresses: daley@csd.uwo.ca (M. Daley), hjj@csd.uwo.ca (H. Jürgensen), lila@csd.uwo.ca (L. Kari), kmahalingam@iitm.ac.in (K. Mahalingam).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.12.024

http://dx.doi.org/10.1016/j.tcs.2011.12.024
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:daley@csd.uwo.ca
mailto:hjj@csd.uwo.ca
mailto:lila@csd.uwo.ca
mailto:kmahalingam@iitm.ac.in
http://dx.doi.org/10.1016/j.tcs.2011.12.024

2 M. Daley et al. / Theoretical Computer Science () –

in the context of DNA encodings was investigated in [12]. Another approach to dealing with the issue of decodability in the
case of C not being a code uses coding partitions [2].

Many natural classes of codes can be defined in terms of some independence properties [9]. A subset H of Σ∗ is called
an independent set with respect to a partial order ≤ if every pair of distinct words in H is incomparable with respect to the
partial order≤. If, for example,≤ = ≤p, the prefix order defined by u ≤p v if the word u is a prefix of the word v, then H is
an independent set with respect to≤p if and only if H is a prefix code. Thus, the family of all independent sets with respect
to the prefix order is exactly the family of all prefix codes over Σ .

In Section 3, we relativize the general definition of a code, starting from a relation or a predicate that defines it. Given
a non-empty set C ⊆ Σ+, not necessarily a code, and a predicate P on the set of finite subsets of Σ∗, a word q ∈ C+ is
called P-admissible for C if the following condition is satisfied: if q = xuy = x′u′y′, with u, u′ ∈ C and x, x′, y, y′ ∈ C∗, then
P({u, u′}) = 1. The predicates P to which this definition applies include those defining prefix, suffix, infix and outfix codes.
For example, the predicate Pp defines prefix-freeness as follows: for u, u′ ∈ Σ+, Pp({u, u′}) = 1, if and only if u is not a
proper prefix of u′ and u′ is not a proper prefix of u. Then a word q ∈ C+ is prefix-admissible (Pp-admissible) for C if no two
words u, u′ ∈ C appearing in any decoding of q over C are strict prefixes of each other. We observe that, for several standard
predicates P (prefix-free, suffix-free, infix-free, outfix-free, etc.), if a word is P-admissible then it is uniquely decodable over
C . Thus, based on the notion of P-admissibility, we define the notion of a P-code relative to a language as follows: a set C is
called a P-code relative to a language L ⊆ C+ if every word q in L is P-admissible for C . When L = C+ and P is one of the
standard predicates, then the notion of P-code relative to L = C+ coincides with the respective classical notion of prefix
code, suffix code, infix code, outfix code, etc.

We compare our method of relativizing the notion of code with other approaches: coding partitions (Section 3.1); relative
solid codes (Section 3.2); joins of a code (Section 3.3).

In Section 4, we derive several general properties of relativized codes and also of special classes of such codes. We show
for example that, for the predicates mentioned above, the relativized codes form a hierarchy similar to the one for classical
codes and that, for any given word q which is P-admissible for C , we can extract a subset Cq ⊆ C such that q ∈ C+q , Cq is a
P-code, and Cq is minimal with respect to this property.

2. Notation and basic notions

The sets of positive integers and of non-negative integers are N and N0, respectively. An alphabet is a non-empty set. To
avoid trivial special cases, we assume that an alphabet has at least two elements. Throughout this paper Σ is an arbitrary,
but fixed, alphabet. When required we add the assumption that Σ is finite. A word over Σ is a finite sequence of symbols
from Σ; the set Σ∗ of all words over Σ , including the empty word λ, is a free monoid generated by Σ with concatenation
of words as multiplication. The set of non-empty words is Σ+, that is, Σ+ = Σ∗\{λ}. A language over Σ is a subset of Σ∗.
For a language L ⊆ Σ∗ and n ∈ N0 let

Ln =

{λ}, if n=0,
L, if n=1,
w

 ∃u ∈ L ∃v ∈ Ln−1 : w = uv

, if n>1.

Moreover, let

L∗ =

n∈N0

Ln and L+ =

n∈N

Ln.

If P is a property of languages, then LP(Σ) is the set of languages L over Σ for which P(L) = 1, that is, P(L) is true. We write
LP instead of LP(Σ) when Σ is understood. In the remainder of this paper, unless explicitly stated otherwise, all languages are
assumed to be non-empty.

Many classes of codes and related languages can be defined systematically in terms of relations on the free monoid Σ+

or in terms of abstract dependence systems. See [9,10,14,15] for details. In the present paper only the following relations
between words u, v ∈ Σ+ are considered:

Property Definition Notation
u is a prefix of v: v ∈ uΣ∗ u ≤p v

u is a proper prefix of v: v ∈ uΣ+ u <p v
u is a suffix of v: v ∈ Σ∗u u ≤s v

u is a proper suffix of v: v ∈ Σ+u u <s v
u is an infix of v: v ∈ Σ∗uΣ∗ u ≤i v
u is a proper infix of v: (u ≤i v) ∧ (u ≠ v) u <i v
u is an outfix of v: ∃u1, u2 (u = u1u2 ∧ v ∈ u1Σ

∗u2) u ωo v
u is a proper outfix of v: (u ωo v) ∧ (u ≠ v)

We say that u is a scattered subword of v, and we write u ωh v, if, for some n ∈ N, there are u1, u2, . . . , un ∈ Σ∗ and
v1, v2, . . . , vn+1 ∈ Σ∗ such that u = u1u2 · · · un and v = v1u1v2u2 · · · unvn+1. We say that u and v overlap, and we write
u ωol v, if there is q ∈ Σ+ such that q <p u and q <s v or vice versa. The relation ωol is symmetric.

M. Daley et al. / Theoretical Computer Science () – 3

A binary relation ω on Σ+ defines the property (predicate) Pω of languages L ⊆ Σ+ as follows: Pω(L) = 1 if and only if,
for all u, v ∈ L, one has u ω̸ v and v ω̸ u. Clearly, if Pω(L) = 1 and L′ ⊆ L, then Pω(L′) = 1. Thus Pω(L) = 1 if and only if
Pω({u, v}) = 1 for all u, v ∈ L. Here the words u and v need not be distinct. This is important for the case of ωol for instance.
Obviously, when ω is reflexive one has Pω(L) = 0 for every non-empty language L.

When ω = <p we write Pp instead of P<p . Similarly, when ω = ωol we write Pol instead of Pωol . The predicates Ps, Pi and
Po are defined analogously starting from <s, <i and ωo, respectively.

For a set S, P(S) is the set of all subsets of S and Pfin(S) is the set of all finite subsets of S. For n ∈ N, let

P≤n(S) = {T | T ∈ P(S), |T | ≤ n}

and

P=n(S) = {T | T ∈ P(S), |T | = n}.

In [9] the hierarchy of classes of codes is introduced using the systematic framework of abstract dependence systems.
For the purposes of the present paper, the following simplified concepts suffice.

For the remainder of this section, we refer to [9,15] and to sources cited there.
Let C ⊆ Σ+. The language C is uniquely decodable if C+ is a free subsemigroup of Σ+ which is freely generated by C . A

less abstract, but equivalent definition reads as follows:
Definition 2.1. Let C ⊆ Σ+ be a language over Σ , and let w ∈ Σ+.
1. The word w is C-decodable if there are n ∈ N and words u1, u2, . . . , un ∈ C such that u1u2 · · · un = w. In this case, the

pair (n, (u1, u2, . . . , un)) is called a C-decoding of w.
2. The language C is uniquely decodable if every word in Σ+ has at most one C-decoding.

Thus a language C is uniquely decodable, if and only if every word in C+ has a unique C-decoding. We omit the reference
to C when C is understood from the context. In the followingwe sometimes use parentheses to describe various C-decodings
of a word. For example, if C = {a, ab, ba}, then w = aba = (a)(ba) = (ab)(a) has two different C-decodings.

As every word in C+ involves only finitely many elements of C , the language C is uniquely decodable if and only if every
language in Pfin(C) is uniquely decodable.

In the literature one finds the term ‘‘code’’ used in two different ways: (1) a non-empty language not containing the empty
word; (2) a uniquely decodable non-empty language not containing the empty word. For the rest of this paper we adopt the
second meaning. By Lcode we denote the set of codes over Σ . For a regular language C ⊆ Σ+ it is decidable whether
C ∈ Lcode; for linear languages the code property is undecidable.

We now introduce some important classes of languages or codes. Further classes will be defined when they are needed.
Let C ⊆ Σ+.

For n ∈ N with n > 1, C is an n-code if every language in P≤n(C) is a code. In general, an n-code is not necessarily
a code. By Ln-code we denote the set of n-codes over Σ . For regular C it is decidable whether C ∈ L2-code. For L3-code the
corresponding problem is open. The n-codes form an infinite descending hierarchy with Lcode as its lower bound.

The language C is a prefix code if, for all u, v ∈ C , u ≮p v. It is a suffix code if, for all u, v ∈ C , u ≮s v. It is a bifix code
if it is both a prefix code and a suffix code. It is an infix code if, for all u, v ∈ C , u ≮i v. It is an outfix code if, for all distinct
u, v ∈ C , u ω̸o v. It is a solid code if it is an infix code and if, for all u, v ∈ C not necessarily distinct, u and v do not overlap.
The language C is a hypercode if, for all distinct u, v ∈ C , u ω̸h v.

By Lp, Ls, Lb, Li, Lo, Lh, and Lsolid we denote the sets of prefix codes, suffix codes, bifix codes, infix codes, outfix codes,
hypercodes, and solid codes, respectively. The first six of these classes of codes are defined by predicates Pp, Ps, Pb, Pi, Po and
Ph on P=2(C). For Lsolid we need Psolid = Pi ∧ Pol on P≤2(C).

For n ∈ N, the language C is an intercode of index n if, Σ+CnΣ+ ∩ Cn+1
= ∅. The class Lintern of intercodes of index

n is defined by a predicate Pintern on P≤2n+1(C) derivable from Pi. The set Linter1 of intercodes of index 1 is exactly the set
Lcomma-free of comma-free codes. The languages in Linter =


n∈N Lintern are called intercodes.

Lemma 2.1 (See [9,15]). The following inclusions hold:

Lp ∪Ls (Lcode, Li ∪Lo (Lb = Lp ∩Ls,

∀n Lintern (Lintern+1 (Linter (Lb, Lh ∩Lsolid (Lh (Li ∩Lo

and

Lh ∩Lsolid (Lsolid (Lcomma-free (Li.

It will simplify the notation significantly and also open the prospects of considering a different set of problems if we
weaken the definitions as follows: for

ϱ ∈ {p, s, b, i, o, h, solid, ol, intern, n-code, comma-free}

and potentially other types ϱ of language properties, Pϱ is a predicate on Pfin(C) in the following sense: a language L ⊆ C
has the property ϱ if and only if Pϱ(L) holds true, that is, Pϱ(L) = 1; for ϱ ∈ {p, s, b, i, o, solid, ol}we are mainly interested
in situations when |L| ≤ 2 as this leads to manageable decision properties. As a warning to the reader – we have seen this
misread before – the set {u, v} is equal to {u}when u = v, that is, {u, v} is not a pair, but a set.

4 M. Daley et al. / Theoretical Computer Science () –

3. Relativizing codes

Consider a language C ⊆ Σ+ which is going to be used for encoding messages. If there are no restrictions as to which
messages to expect, one could encounter any word in C+ as an encoded message. If, however, the set of messages to be
encoded is restricted, then one may only encounter encoded messages in a set L (C+. We show that, by restricting the set
of expected encoded messages to a language L ⊆ C+, one can weaken the conditions C must satisfy while still preserving
useful properties for all the words in L. For example, if we want the words in L to be uniquely C-decodable, then we may
weaken the condition of unique decodability for C; in such a case, C need not be a code. If L ⊆ C+ is a set of (encoded)
messages which are uniquely C-decodable, then C is said to be a code relative to L.

Definition 3.1 ([6]). A set C ⊆ Σ+ is said to be a code relative to L ⊆ C+ if every word q ∈ L has a unique C-decoding.

A language C ⊆ Σ+ is a code if and only if it is a code relative to C+.
In view of Definition 2.1 above and Proposition 3.2 below we rephrase Definition 3.1 as follows.

Remark 3.1. Let L, C ⊆ Σ+. The language C is a code relative to L if every q ∈ L has at most one C-decoding.

Example 3.1. Consider the set C = {a, ab, ba} over the binary alphabet Σ = {a, b}. The given set C is not a code since the
word w = aba = (a)(ba) = (ab)(a) has two different C-decodings. Let

L = {ab, ba}+ ∪ {am(ab)n | m ≥ 0, n ≥ 1}
∪ {(ba)man | m ≥ 1, n ≥ 0} ∪ {am | m ≥ 1}.

Then, for all q ∈ L, q has a unique C-decoding and, hence, C is a code relative to L.

Proposition 3.1. Let C ⊆ Σ+ and let L be the set of languages in C+ such that C is a code relative to L for all L ∈ L. Let

Lmax(C) = {q | q has a unique C-decoding}.

The set L is closed under arbitrary unions and

Lmax(C) =

L∈L

L.

The set L is also closed under arbitrary intersections.1

Proof. Let L′ ⊂ L and q ∈


L∈L′ L. Then q ∈ L for some L ∈ L, and q has a unique C-decoding. Hence
L∈L′

L ∈ L.

Let L̂ =


L∈L L. Thus, L̂ ∈ L. As Lmax(C) ∈ L, one has Lmax(C) ⊆ L̂, but also L̂ ⊆ Lmax(C).
The claim for the intersection follows from the fact that


L∈L′ ⊆ Lmax(C) for all L′ ⊆ L. �

Note that, even for an infinite language C , the set Lmax(C) of all uniquely C-decodable messages over C can be finite.

Example 3.2. Let C = {(ab)n | n ≥ 1}. Then C is not a code, but C is a code relative to Lmax(C) = {ab}.

In the following definition, we establish a mechanism for relativizing code properties given by predicates or binary
relations.

Definition 3.2. Let C be a subset of Σ+ and let P be a predicate on Pfin(C). A word q ∈ C+ is said to be P-admissible for C if
the following condition is satisfied: if q = xuy = x′u′y′, with u, u′ ∈ C and x, x′, y, y′ ∈ C∗ then P({u, u′}) = 1.

This means that a word q ∈ C+ is P-admissible if every two words u, u′ ∈ C appearing in C-decodings of q, together
satisfy the property P . For example, for P = Pp, a word q is prefix-admissible, if no two words u, u′ ∈ C appearing in
C-decodings of q are strict prefixes of each other. There is a subtle point: suppose that u′ is a proper prefix of u. For a word
q two different situations need to be considered:

1. The word q has a C-decoding of the form

· · · (u′) · · · (u) · · ·

or

· · · (u) · · · (u′) · · · .

This is the situation considered in Definition 3.2.
2. The word q has two C-decodings of the form q1(u′)v′q2 and q1(u)q2 with u = u′v′.

1 In contrast to our general convention for this paper, here we include the case of a language being empty.

M. Daley et al. / Theoretical Computer Science () – 5

The difference between these situations becomes apparent in our discussion of relativized solid codes below. Thus,
Definition 3.2 applies to any occurrences of u and u′, not just to those situations in which u and u′ start at the same position
in q, and also not just to occurrences of u and u′ in the same C-decoding of q. Thus, if u and u′ are distinct and occur in any
C-decodings of q ∈ L, prefix-admissible for C , then the set {u, u′}must be a prefix code.

Similarly, a word q ∈ C+ is overlap-admissible if no two words u, u′ ∈ C , not necessarily distinct and appearing in any
C-decodings of q, overlap. In particular, if u ∈ C and u occurs in a C-decoding of q, then umust not overlap itself.

Using the setting of Example 3.1, note that the word q = a(ba)(ba) = (ab)a(ba) = (ab)(ab)a is not prefix-admissible
because, taking the first and third C-decodings of q, u = a is a prefix of u′ = ab. The word q is also not suffix-admissible
because, taking the first and second C-decodings of q, u = a is a suffix of u′ = ba. On the other hand, theword q′ = (ba)(ba)a
is prefix-admissible, but not suffix-admissible, because a is a suffix of ba. The word q′′ = a(ab)(ab) is suffix-admissible, but
not prefix-admissible, because a is a prefix of ab.

Definition 3.3. Let C be a subset of Σ+, let L ⊆ C+ and let P be a predicate on Pfin(C). Then C is said to satisfy P relative to
L if every q ∈ L is P-admissible for C .

Definition 3.4. When C satisfies P relative to Lwe say that C is a P-code relative to L.

Example 3.3. Consider C = {a, ab, ba} as in Example 3.1. The language C is not a prefix code as a <p ab. The set C is a
Pp-code relative to L1 = {ab, ba}+ ∪ {(ba)nam | n,m ≥ 1}. Note that C is not a Ps-code relative to L1. The set C is a Ps-code
relative to L2 = {am(ab)n | m ≥ 0, n ≥ 1} ∪ {am | m ≥ 1}.

The idea of decoding messages over a set C which is not a code, is not new. Several authors [2,4,6] have used different
ideas to weaken the condition on C , so that messages could still be uniquely decodable using C in some sense, even when C
is not a code. In the remainder of this section, we describe three such approaches, as follows. The use of coding partitions for
decoding messages over a set which is not a code, from [2], is described in Section 3.1. The idea of relativizing solid codes,
from [4,8], is discussed in Section 3.2, and that of relativizing comma-free codes, from [6,12], is described in Section 3.3.
Moreover, we briefly outline the connection between relativized codes and free subsemigroups of free semigroups in
Section 3.4.

3.1. Using coding partitions

In [2], a method to decode messages over C by partitioning the given set C , even when C is not a code, is proposed as
follows:

Definition 3.5. Let F = {X1, X2, . . . , Xi, . . .} be a partition of C such that X+i ∩ X+j = ∅ for i ≠ j. For a word q ∈ C+ a
decoding over F is an n-tuple (z1, z2, . . . , zn) for some n such that the following conditions are met:

1. q = z1z2 · · · zn;
2. for every i = 1, 2, . . . , n there is ji with zi ∈ X+ji ;
3. for i = 1, 2, . . . , n− 1, with ji as before, one has zi+1 /∈ X+ji .

The set F is called a coding partition, if every q ∈ C+ has a unique decoding over F .

Example 3.4 ([2]). Let Σ = {a, b} and C = {aa, aaa, bb, bbb}. Let F = {X1, X2} where X1 = {aa, aaa} and X2 = {bb, bbb}.
The set F is a partition of C with X+1 ∩ X+2 = ∅. One computes that

C+ = (aa+bb+)+ ∪ (aa+bb+)∗aa+ ∪ (bb+aa+)+ ∪ (bb+aa+)∗bb+.

Therefore, F is a coding partition. As neither X1 nor X2 is a code, the set C is not a code either.

This approach differs from our approach in two ways:

1. If F is a coding partition for C , then every word q ∈ C+ can be uniquely decoded over F , provided a nontrivial partition
exists [2]. However such a word q need not have a unique C-decoding. For instance, the word q = a2b5a3 ∈ C+ with C
as in Example 3.4 has a unique decoding over the partition F into z1 = a2, z2 = b5 and z3 = a3, but has two C-decodings
(aa)(bb)(bbb)(aaa) and (aa)(bbb)(bb)(aaa). By comparison, as shown in Proposition 4.3, everyword that is Pp-admissible
or Ps-admissible for C is uniquely C-decodable.

2. In contrast to our approach, the coding partition method does not always identify the words with unique C-decodings.
Indeed, in some cases a nontrivial coding partition may not exist for a given set C , and hence none of the words in C+
could be considered as possible uniquely decodable messages according to this method. In such cases, words over C that
have a unique C-decodingmay be left out. Consider the set C = {a, ab, ba}. According to [2], the only coding partition for
this set is the trivial partition, that is, the set C itself. However, as seen in Example 3.1, there exists an infinite language L
such that C is a code relative to L, that is, the infinitely many words in L all have unique C-decodings. These words would
be identified by our approach as being uniquely C-decodable, since the first and third components of L consist of prefix-
admissible words, while the first and the second components of L consist of suffix-admissible words.

6 M. Daley et al. / Theoretical Computer Science () –

3.2. Relative solid codes

In [4] the notion of relativized solid code is defined as follows.

Definition 3.6 ([4]). Let C be a subset of Σ+ and let L ⊂ Σ+. The set C is a solid code relative to L if it satisfies the following
conditions for all words q ∈ L:
1. if q = xsztywith x, y, s, t ∈ Σ∗ such that z, szt ∈ C , then st = λ;
2. if q = xsztywith x, y, s, t ∈ Σ∗ such that sz, zt ∈ C and z ∈ Σ+ then st = λ.

The first condition states that, for u, v ∈ C , if u <i v, then, for all q ∈ L, v ≰i q. The second condition states that if
u, v ∈ C , and u and v overlap as u = sz and v = zt with z ∈ Σ+, then, for all q ∈ L, szt ≰i q.

Definition 3.6 is one possible relativization of the notion of solid code, which is different from the notion of Psolid-code
relative to a language as introduced in Definition 3.4. Our definition above is based on a different, but equivalent, definition
of non-relativized solid codes as overlap-free infix codes.

Note that, if C is a solid code relative to L then C is a Pi-code relative to L ∩ C+. Indeed, let q in L ∩ C+. If u ∈ C occurs in
a C-decoding of q, v ∈ C and u <i v, then v ≮i q. Hence v does not occur in a C-decoding of q.

For (unrelativized) solid codes there is also a definition based on decompositions of messages (see [9]): let C be a subset
of Σ+ and q ∈ Σ+. A C-decomposition of q consists of two sequences u0, u1, . . . , un ∈ Σ∗ and v1, v2, . . . , vn ∈ C for some
n ∈ N, such that q = u0v1u1v2u2 · · · vnun and v ≰i ui for all v ∈ C and i = 0, 1, . . . , n. Every word q ∈ Σ+ has at least one
C-decomposition. Note that every C-decomposition of a word in C+ can be considered as a C-decoding as follows:

u0 = u1 = · · · = un = λ

and the C-decoding is

(n, (v1, v2, . . . , vn)).

The set C is a solid code if and only if every word in Σ+ has a unique C-decomposition. In [8], a relativization of the notion
of solid code is proposed, based on the uniqueness of C-decompositions, and this notion turns out to be equivalent to the
one of Definition 3.6.

Proposition 3.2 ([8]). Let L ⊆ Σ+. A language C ⊆ Σ+ is a solid code relative to L if and only if every word q ∈ L has a unique
C-decomposition.

The difference between these equivalent concepts and our approach to relativizing solid codes is illustrated by the
following example.

Example 3.5 ([6]). Let Σ = {a, b, c} and C = {ab, c, ba}. The set C is not overlap-free, hence not a solid code. By
Definition 3.6, C is a solid code relative to the language L = ({abc}


{cba})∗. However, the set C is not a Psolid-code relative

to L, as q = abccba ∈ L has the C-decoding (ab)(c)(c)(ba) and is thus not Psolid-admissible since ab <ol ba.

3.3. Decoding messages over sets that are not comma-free

Another type of relativization, for sets which are not comma-free, was suggested by Head in [6]. For a given set C that
is not comma-free, one decodes the messages over C pretending that C is comma-free. Using coding properties relative to
a language [4], a sequence of subsets of C is constructed, which are comma-free. The codes of this sequence are called join
codes.

Definition 3.7 ([6]). A word w ∈ Σ∗ is said to be a join relative to a language L, if, for some u, v ∈ Σ∗ with uwv ∈ L, then
both u and v are also in L. A word w ∈ C is said to be a join in C , if it is a join relative to C∗.

It is shown in [6] that, for a given code C , the set J(C) of its joins is indeed a comma-free code. Similarly, with C1 = C\J(C),
let J(C1) be the set of joins of C1. In general, if Ci is not empty, let J(Ci) be the set of joins of Ci and let Ci+1 = Ci \ J(Ci). Thus a
sequence of comma-free codes can be obtained from C , itself not comma-free, and messages over C are decoded using the
sequence of joins. If C is such that C =


i≥0 J(Ci), with C0 = C , then C is called a split code.

Example 3.6 ([6]). Let C = {a, bab, cbabc} be a code over the alphabet {a, b, c}. Then J(C) = {cbabc}, C1 = C \ J(C) =
{a, bab} and J(C1) = {bab} and C2 = J(C2) = {a}with C3 = ∅. One can verify that J(C), J(C1) and J(C2) are comma-free and
C is indeed a split code. Fig. 1 shows how the word acbabcbabcbabcaababacbabcabab in C+ can be decoded in steps, using
joins.

Observe that the set C in Example 3.6 is not comma-free, but any message over C+ can be decoded using J(C) first and
then J(C1) and hence J(C2). However, this procedure is not applicable for all sets C because the join of C or one of the sets Ci
could be empty. For a set C , every word over C can be decoded using the join codes as if the set C were a comma-free code
only if C is a split code.

However, even in problematic cases, our approach can provide words in the set C+ that can be decoded as if the set C
were comma-free. For example, consider the set X = {abb, aab, aba, bab} over the alphabet {a, b}. Observe that
1. ab(bab)b ∈ X∗ with ab, b /∈ X ,

M. Daley et al. / Theoretical Computer Science () – 7

a a a a a a a a a a ab b b b b b b b b b b bc c c c c c
..

.......... ..
.......... ..

.......... joins of C
..

.......... ..
.......... ..

.......... ..
.......... joins of C1

..
.......... joins of C2

Fig. 1. For C = {a, bab, cbabc}, the word acbabcbabcbabcaababacbabcabab in C+ can be decoded in steps, using the joins J(C) = {cbabc}, J(C1) = {bab},
and J(C2) = {a}, which are comma-free.

2. a(abb)ab ∈ X∗ with a, ab /∈ X ,
3. ab(aab)b ∈ X∗ with ab, b /∈ X and
4. b(aba)ab ∈ X∗ with b, ab /∈ X .

Thus, for all w ∈ X , there exist words of the form uwv ∈ X∗ where neither u nor v belong to X . Therefore, by Definition 3.7,
J(X), the join of X , is empty and hence noword over X+ can be decoded using a comma-free set. However, q = abbaab ∈ X+
is comma-free-admissible for X , because q = (abb)(aab), and q has a unique X-decoding. Moreover, q ∈ C+q , and q has a
unique Cq-decoding for Cq = {abb, aab}, where Cq is a comma-free code. The general method for constructing Cq is given in
Proposition 4.5 below. Thus evenwhen the join of a set X is empty, ourmethod could still identify words over X asmessages
which can be uniquely decoded using a comma-free subset of X .

3.4. Free subsemigroups of free semigroups

In this section we summarize related work on free subsemigroups of free semigroups. As a general source we refer to [3].
The literature cited there should be consulted as well.

The set Σ+ is a free semigroup freely generated by Σ . A subset C ⊆ Σ+ is a code, if and only if the semigroup C+
generated by C is free with C as the free set of generators. If C+ is not freely generated by C , that is, C is not a code, our
relativization considers languages the words of which are uniquely C-decodable. One could turn the question around as
follows: given a language L ⊆ Σ+, find a language C ⊆ Σ+ such that all words in L have a unique C-decoding.

In amore restricted framework this question is studied in [3] to determine properties of the ‘minimal’ embedding of non-
free subsemigroups of Σ+ into free subsemigroups of Σ+. Consider a finite set G ⊆ Σ+, and let L be the subsemigroup of
Σ+ generated byG. The free envelope Hf(L) of L is the smallest free subsemigroup ofΣ+ containing L. The unique factorization
extension Hu(L) of L is the smallest subsemigroup of Σ+ in which the elements of L can be factored uniquely.2 Both Hf(L)
and Hu(L) are finitely generated. In general, Hu(L) ⊆ Hf(L).

Now consider minimal sets of generators Gf and Gu for Hf(L) and Hu(L), respectively. These are unique. If L is not freely
generated by G, then |Gf| < |G| and |Gu| < |G|.

Either one of Gf or Gu would take the rôle of the relativized code C in our setting.

4. Properties of relativized codes

In this section we derive several properties of relativized codes and relativized P-codes. We focus on the particular case
of predicates emphasized in Section 2: prefix-, suffix-, infix-, outfix-, overlap-free, etc. We show that, for several of these
predicates, a hierarchy exists for the corresponding relativized codes, similar to that for classical codes and that, for any
given word q ∈ Σ+ that is P-admissible for C ⊆ Σ+, one can extract a subset Cq ⊆ C such that q ∈ C+q , Cq is a code and Cq
is minimal with respect to this property.

Observe that, if C satisfies P relative to L then C satisfies P relative to L′ for all L′ ⊆ L.
The following statement generalizes Proposition 3.1.

Proposition 4.1. Let C ⊆ Σ+, let P ∈ Pfin(C), and let L be the set of languages in Σ+ such that C satisfies P relative to L for all
L ∈ L. Let

Lmax(C, P) = {q | q ∈ C+, q is P-admissible for C}.

The set L is closed under arbitrary unions and

Lmax(C) =

L∈L

L.

The set L is also closed under arbitrary intersections.3

Proof. The proof is similar to the proof of Proposition 3.1. �

2 This means, that they have unique Gu-decodings, where Gu is the unique minimal set of generators of Hu(L).
3 As in Proposition 3.1, in this statement a language is permitted to be empty.

8 M. Daley et al. / Theoretical Computer Science () –

Note that, for any word in Lmax(C, P), the set C behaves like a code satisfying P . For example, if P = Pp and C is a Pp- code
relative to L, any message in Lmax(C, P) can be decoded as though C were a prefix code.

Proposition 4.2. Let C ⊆ Σ+, and P be a predicate Pfin(C), The following are equivalent.

1. C satisfies P relative to C2.
2. C satisfies P relative to C+.
3. Lmax(C, P) = C+.

Proof. (2)⇒ (1): If C satisfies P relative to C+, then C satisfies P also relative to C2 as C2
⊆ C+.

(1)⇒ (2): Consider q = uv ∈ C2, with u, v ∈ C . By assumption q is P-admissible for C , hence P({u, v}) = 1. This holds
true for all words q ∈ C2, hence for all words u, v ∈ C . Therefore, C satisfies P relative to C+.

(3)⇒ (2): C satisfies P relative to Lmax(C, P) which is equal to C+.
(2)⇒ (3): Lmax(C, P) ⊆ C+ by definition and C+ ⊆ Lmax(C, P) by assumption (2). �

We consider closure properties of the set L of languages relative to which a given language C ⊆ Σ+ is a P-code. In
addition to union, intersection, concatenation and complement, we also include the mirror image, insertion, deletion and
shuffle.

Forw = a1a2 · · · an−1an with a1, a2, . . . , an ∈ Σ , denote bymi(w) themirror image ofw, that is,mi(w) = anan−1 · · · a2a1.
For L ⊆ Σ∗, mi(L) = {mi(w) | w ∈ L}. For two words u, v ∈ Σ∗, the insertion of v into u is defined in [11] as

u←− v = {u1vu2 | u1u2 = uwith u1, u2 ∈ Σ∗},

and the deletion of v from u, is defined in [11] as

u −→ v = {u1u2 | u = u1vu2 with u1, u2 ∈ Σ∗}.

The shuffle of u and v is the set

u x v =


w

 w ∈ Σ∗, ∃n ∈ N ∃u0, u1, . . . , un ∈ Σ∗

∃v1, v2, . . . , vn ∈ Σ∗ : u = u0u1 · · · un,
v = v1v2 · · · vn, w = u0v1u1v2u2 · · · vnun


.

Remark 4.1. Let C ⊆ Σ+, let P be a predicate Pfin(C), and let L be the set of languages relative to which C is a P-code.

1. L is closed under arbitrary unions and intersections.
2. L is not necessarily closed under concatenation.
3. L is not necessarily closed under complement, mirror image, insertion, deletion or shuffle.

Proof. Statement (1) is proved in Proposition 4.1.
For Statement (2), consider P = Pp and C = {a, ab, ba}. Let L1 = {babaa} and L2 = {ba}. Then L1L2 = {babaaba}. The

word babaaba has a factorization (ba)(ba)(ab)(a). As a <p ab, this word is not Pp-admissible for C .
Statement (3) follows from the fact that each of these operations can result in words which are not in C+. �

As shown in the proof, the non-closure in Statements (2) and (3) is fundamentally different.
In the remainder of this section we consider properties of P-codes relative to a language for the particular cases of

predicates defined in Section 2.
We first show that for ϱ ∈ {p, s, b, i, o, h, solid, intern}, if a word q ∈ C+ is Pϱ admissible for C , then q has a unique

C-decoding.

Proposition 4.3. Let C be a subset of Σ+ and let q ∈ C+. If q is Pp-admissible or Ps-admissible for C, then q is uniquely
C-decodable.

Proof. Suppose that q has two different C-decodings

q = x1x2 · · · xn = y1y2 · · · ym.

There is a smallest k, 1 ≤ k ≤ n, such that xk ≠ yk. For this k, without loss of generality, xk <p yk. Hence, Pp({xk, yk})
is false. By left–right duality there is an l, 1 ≤ l ≤ n, such that Ps({xl, yl}) is false. Thus, q is neither Pp-admissible nor
Ps-admissible. �

The following Lemma states the general structure of the proof of Proposition 4.3.

Lemma 4.1. Let P and P ′ be predicates in Pfin(C) with the following properties:

1. For all x, y ∈ Σ+, P({x, y}) = 1 implies P ′({x, y}) = 1.
2. For all sets C ⊆ Σ+ and all q ∈ C+, P ′-admissibility of q for C implies that q is uniquely C-decodable.

Then, for all sets C ⊆ Σ+ and all q ∈ C+, if q is P-admissible for C then q is uniquely C-decodable.

Corollary 4.1. For all ϱ ∈ {p, s, b, i, o, h, solid, intern}, for all sets C ⊆ Σ+ and for all q ∈ C+, if q is Pϱ-admissible for C then
q is uniquely C-decodable. Moreover, if C is a Pϱ-code relative to L then C is a code relative to L.

M. Daley et al. / Theoretical Computer Science () – 9

Proof. By Lemma2.1, for everyϱ ∈ {p, s, b, i, o, h, solid, intern}, the predicate Pϱ implies Pp∨Ps. The statement thus follows
from Proposition 4.3 and Lemma 4.1. �

For ϱ ∈ {p, s, b, i, o, h, solid, intern} and related ones, Pϱ-admissibility implies unique decodability. The converse
implication is not true in general. In Example 3.1, the word q = (a)(ab)(ab) is uniquely C-decodable, but not Pp-admissible
for C .

Remark 4.2. If C is a P-code relative to C+ then P({x, y}) = 1 for all x, y ∈ C . In particular, ifϱ ∈ {p, s, b, i, o, h, solid, intern}
and C is a Pϱ-code relative to C+, then C is a ϱ-code in the usual sense.

Proof. For every x, y ∈ C there is a word q ∈ C+ such that both x and y occur in a C-decoding of q. As q is P-admissible
for C , one has P({x, y}) = 1. For ϱ ∈ {p, s, b, i, o, h, solid, intern}, C is a ϱ-code if and only if Pϱ({x, y}) = 1 holds for all
x, y ∈ C . �

According to Remark 4.1, concatenations of P-admissible words need not be P-admissible. The following proposition
gives a condition under which powers of P-admissible words are P-admissible.

Proposition 4.4. If C ⊆ Σ+ is a code then, for q ∈ C+, we have that q is P-admissible for C if and only if qn is P-admissible for
C for all n ≥ 2.

Proof. Given q is P-admissible for C and let qn = xuy = x′u′y′ such that x, y, x′, y′ ∈ C∗, u, u′ ∈ C . Given that C is a code and
hence qn has a unique C-decoding. Thus qn = qkx1uy1ql = qix′1u

′y′1q
j where q = x1uy1 = x′1u

′y′1 with x1, y1, x′1.y
′

1 ∈ C∗ and
k+ l = i+ j = n− 1. Since q is P-admissible for C , P({u, u′}) = 1. Thus qn is P-admissible for C . For the other implication
assume that qn is P-admissible for C for some n ≥ 2. Let q = xuy = x′u′y′ with x, y, x′, y′ ∈ C∗ and u, u′ ∈ C . Then
qn = qn−1q = qn−1xuy = qqn−1 = x′u′y′qn−1 with qn−1x, y, x′, y′qn−1 ∈ C∗ and hence P({u, u′}) = 1. Thus q is P-admissible
for C . �

Observe that if q is P-admissible for C , then for an arbitraryw ∈ Sub(q)∩C+, where Sub(q) denotes the set of all subwords
of q, w need not be P-admissible for C . Let C = {a, ba, ab}, q = bababa is Pp-admissible for C but aba ∈ Sub(q) ∩ C+ is not
Pp-admissible for C since a <p ab. Note that C is not a code. The statement does not hold even if C is a code. For example
consider C1 = {aba, ba}. The word q = bababa is Ps-admissible for C1 but ababa ∈ Sub(q) ∩ C+1 is not Ps-admissible for C1
since {aba, ba} /∈ Ps.

The following observation shows that, for several standard predicates, a hierarchy of the corresponding relativized codes
exists, similar to the one for unrelativized codes.

Lemma 4.2. Let ϱ1, ϱ2 ∈ {p, s, b, i, o, h, solid, intern}. If C is a Pϱ1-code relative to L for some language L ⊆ C+ and if
Pϱ1({x, y}) = 1 implies Pϱ2({x, y}) = 1 for all x, y ∈ Σ∗, then C is a Pϱ2-code relative to L.

Proposition 4.5. For all ϱ ∈ {p, s, b, i, o, h, solid, intern}, let q ∈ C+ be Pϱ-admissible for C. Then there exists a unique set
Cq ⊆ C such that q ∈ C+q , Cq is a Pϱ-code, and Cq is minimal with respect to this property.

Proof. Since q ∈ C+ there exist x1, x2, .., xn ∈ C such that q = x1x2 · · · xn and by assumption q is Pϱ-admissible for C . Let
Cq =

n
i=1{xi} and for all xi, xj ∈ Cq, Pϱ({xi, xj}) = 1. Thus Cq is a ϱ-code and Cq isminimal by construction. Nowwe show the

uniqueness of C . Suppose there exists an L =
m

i=1{pi} ⊆ C such that q = p1p2 · · · pm. Then q = x1x2 · · · xn = p1p2 · · · pm
and since q is Pϱ-admissible for C , by Corollary 4.1, q has a unique C-decoding. Thus xi = pi for all i and m = n and hence
L = Cq. �

Thus for ϱ ∈ {p, s, b, i, o, h, solid, intern}, if a word q is Pϱ-admissible for C , then there exists a minimal set Cq ⊆ C such
that Cq is a ϱ-code and q ∈ C+q . For other words in C+q , however, the situation is different. If w ∈ C+q such that w ≠ q, then
w will be Pϱ-admissible for Cq, but it need not be Pϱ-admissible for C . For example, let C = {a, ab, ba} and let q = babaa be
a Pp-admissible word for C . Then Cq = {ba, a} and Cq is a prefix code, i.e., for all w ∈ C+q , w is Pp-admissible for Cq. However,
a word w ∈ C+q need not be Pp-admissible for C . Indeed, the word w = ababa = (a)(ba)(ba) has a Cq-decoding and is
Pp-admissible for Cq, but w = (a)(ba)(ba) = (ab)(ab)(a) has two different decodings over C and also a <p ab. Hence w is
not Pp-admissible for C . In the following corollary we show that the words over Cq will be Pϱ-admissible for C if we impose
an additional constraint on C .

Corollary 4.2. Let q ∈ C+ be P-admissible for C. If C is a code, then there exists a unique set Cq ⊆ C as follows:

1. q ∈ C+q , Cq satisfies P relative to C+q , and Cq is the minimal set with respect to these properties;
2. for all w ∈ C+q , w is P-admissible for C.

As shown in Remark 4.1, the concatenation of two words, each P-admissible for C , is not always P-admissible for C . To
obtain closure under concatenation, we need an additional constraint. Under this constraint, we now state a necessary and
sufficient condition for the concatenation of two P-admissible words to be P-admissible.

Proposition 4.6. Let C ⊆ Σ+ be a code and let q, y ∈ C+ be P-admissible for C. Let Cq and Cy be given as in Corollary 4.2. Every
word z ∈ {q, y}+ is P-admissible for C, if and only if Cq ∪ Cy satisfies P relative to (Cq ∪ Cy)

+.

10 M. Daley et al. / Theoretical Computer Science () –

Proof. The implication ‘‘⇐H’’ is straightforward. Since Cq ∪ Cy satisfies P relative to (Cq ∪ Cy)
+ and C is a code, for all

z ∈ {q, y}+, z has a unique C-decoding and hence also a unique decoding over Cq ∪ Cy. Thus z is P-admissible for C .
For the implication ‘‘H⇒’’, suppose that every z ∈ {q, y}+ is P-admissible for C . Let w ∈ (Cq ∪ Cy)

+ such that
w = αuβ = α′u′β ′ with α, β, α′, β ′ ∈ C∗ and u, u′ ∈ C . Observe that, since C is a code, w has a unique C-decoding
and hence α, β, α′, β ′ ∈ (Cq ∪ Cy)

∗ and u, u′ ∈ (Cq ∪ Cy). Then we have the following cases: (1) u, u′ ∈ Cq, (2) u, u′ ∈ Cy
and (3) u ∈ Cq, u′ ∈ Cy. The first two cases imply that P({u, u′}) = 1 since both Cq and Cy satisfy P relative to C+q and C+y ,
respectively. Suppose for u ∈ Cq, u′ ∈ Cy and P({u, u′}) = 0. Then for z = qy ∈ {q, y}+ one has z = suty = qs′u′t ′ where
q = sut , y = s′u′t ′ with s, t, s′, t ′ ∈ C∗. Hence z = qy is not P-admissible for C , a contradiction. �

In the following, we provide a necessary and sufficient condition for all words w ∈ C to be Pϱ-admissible for C where
ϱ ∈ {p, s, b, i, o, h, solid, intern}.

Proposition 4.7. For all ϱ ∈ {p, s, b, i, o, h, solid, intern}, C ⊆ Lmax(C, Pϱ) if and only if C ∩ Cn
= ∅ for all n ≥ 2.

Proof. AssumeC ⊆ Lmax(C, Pϱ). Suppose there exists a q ∈ C such that q = x1x2 · · · xn for somen ≥ 2 and x1, x2, . . . , xn ∈ C .
Then x1 <p q and xn <s q. By Lemma 2.1, for everyϱ ∈ {p, s, b, i, o, h, solid, intern}, the predicate Pϱ implies Pp∨Ps. Thus for
ϱ ∈ {p, s, b, i, o, h, solid, intern}, Pϱ({xi, q}) = 0 for some i, a contradiction since q is Pϱ-admissible for C . Hence C ∩Cn

= ∅

for all n ≥ 2. Conversely let C ∩ Cn
= ∅ for all n ≥ 2. Let q ∈ C such that q /∈ Lmax(C, Pϱ), then q is not Pϱ-admissible for

C which implies that q = xuy = x′u′y′ with x, x′, y, y′ ∈ C∗, u, u′ ∈ C and Pϱ({u, u′}) = 0. Thus either u <ϱ u′ or u′ <ϱ u
which implies that u ≠ u′ and hence q ∈ Cn for some n ≥ 2 which is a contradiction. Therefore C ⊆ Lmax(C, Pϱ). �

Proposition 4.8. Let C1 and C2 be such that C1 ∩ Cn
1 = ∅ and C2 ∩ Cn

2 = ∅ for all n ≥ 2. Then, for all ϱ ∈
{p, s, b, i, o, h, solid, intern}, C1 = C2 if and only if Lmax(C1, Pϱ) = Lmax(C2, Pϱ).

Proof. Obviously, if C1 = C2, then Lmax(C1, Pϱ) = Lmax(C2, Pϱ). Conversely, let Lmax(C1, Pϱ) = Lmax(C2, Pϱ). We show that
C1 ⊆ C2. Let w ∈ C1. If w /∈ C2, then w ∈ C+2 since, by Proposition 4.7, C1 ⊆ Lmax(C1, Pϱ) = Lmax(C2, Pϱ) and hence
w = y1y2 · · · yn for yi ∈ C2 for all 1 ≤ i ≤ n. Given that C2 ∩ Cn

2 = ∅ for all n ≥ 2, by Proposition 4.7 we have
C2 ⊆ Lmax(C2, Pϱ) = Lmax(C1, Pϱ), yi ∈ Lmax(C1, Pϱ) for all 1 ≤ i ≤ n. Then either yi ∈ C1 or yi ∈ C+1 . In both cases,
w ∈ Cm

1 for somem ≥ 2, a contradiction. Hence w ∈ C2. Similarly one shows that C2 ⊆ C1. �

According to Remark 4.1, if a word w is P-admissible for C for some predicate P in Pfin(C), then its mirror image need
not be P-admissible for C . As stated there, this is mainly due to the fact that C+ need not be closed under mirror images. The
following lemma can serve as a pattern for closure results which go beyond Remark 4.1.

Proposition 4.9. Let C ⊆ Σ∗ be such thatmi(C) = C. Then,
1. C is Pp-code relative L if and only if C is Ps-code relative to mi(L).
2. C is Pϱ-code relative L if and only if C is Pϱ-code relative tomi(L) for all ϱ ∈ {b, i, o, ol, solid, intern}.

Proof. (1) Suppose that C is Pp-code relative to L. Then, for all w ∈ L, w is Pp-admissible for C . Suppose that mi(w) is not
Ps-admissible for C . Then there exist α, β, p, q ∈ C∗ and u, v ∈ C such that mi(w) = αuβ = pvq and Ps({u, v}) = 0. This
implies that

w = mi(β)mi(u)mi(α) = mi(q)mi(v)mi(p)

with

mi(β),mi(α),mi(q),mi(p) ∈ C∗

and

mi(u),mi(v) ∈ C .

Since Ps({u, v}) = 0 also Pp({mi(u),mi(v)}) = 0, a contradiction. The converse follows by left–right duality.
(2) For all u, v ∈ Σ∗, Pϱ({u, v}) = 1 if and only if Pϱ({mi(u),mi(v)}) = 1. Thus mi(w) is Pϱ-admissible for C , if and only

if w is Pϱ-admissible for C . �

5. Conclusions

In this paper we propose a uniform approach to relativizing the notion of code classes to given message spaces, in order
to deal with situations when the set C of codewords is not actually a code in the given class, but nevertheless all words in the
message space can be decoded uniquely according to the requirements of the respective class of codes. We derive several
basic properties of such relativized codes.

Acknowledgements

The research reported in this paper was supported by a Canada Research Chair Award to Lila Kari and grants from the
Natural Sciences and Engineering Research Council of Canada.

The authors thank the referees for their very careful and in-depth recommendations.

M. Daley et al. / Theoretical Computer Science () – 11

References

[1] J. Berstel, D. Perrin, C. Reutenauer, Codes and Automata, in: Encyclopedia of Mathematics and Its Applications, vol. 129, Cambridge University Press,
Camridge, 2010.

[2] F. Burderi, A. Restivo, Coding partitions, Discrete Math. Theor. Comput. Sci. (DMTCS) 9 (2) (2007) 227–240.
[3] T. Harju, J. Karhumäki, On the defect theorem and simplifiability, Semigroup Forum 33 (1986) 199–217.
[4] T. Head, Unique decipherability relative to a language, Tamkang J. Math. 11 (1980) 59–66.
[5] T. Head, Deciding the immutability of regular codes and languages und finite transductions, Info. Processing Letters 31 (1989) 239–241.
[6] T. Head, Relativized code concepts andmulti-tube DNA dictionaries, in: C. S. Calude, Gh. Păun (Eds.), Finite versus Infinite – Contributions to an Eternal

Dilemma, Springer-Verlag, London, 2000, pp. 175–186.
[7] T. Head, Draft of notes for Form. Lang. Sem. Thurs. Sept. 12, 2002, 3 pp. Personal Communication.
[8] H. Jürgensen, Markers and deterministic acceptors for non-deterministic languages, J. of Automata, Languages and Combinatorics 14 (2009) 33–62.
[9] H. Jürgensen, S. Konstantinidis, Codes, in: G. Rozenberg, A. Salomaa (Eds.), in: Handbook of Formal Languages, vol. 1, Springer-Verlag, Berlin, 1997,

pp. 511–607.
[10] H. Jürgensen, S. S. Yu, Relations on free monoids, their independent sets, and codes, Internat. J. Comput. Math. 40 (1991) 17–46.
[11] L. Kari, On insertion and deletion in formal languages, Ph.D. Thesis, University of Turku, 1991.
[12] K. Mahalingam, Involution codes: with application to DNA strand design, Ph.D. Thesis, University of South Florida, 2004.
[13] H.J. Shyr, Free Monoids and Languages, third ed., Hon Min Book Company, Taichung, 2001.
[14] H.J. Shyr, G. Thierrin, Codes and binary relations, in:M.P.Malliavin (Ed.), Séminaire d’algèbre Paul Dubreil, Paris 1975–1976, (29èmeAnnée), in: Lecture

Notes in Computer Science, vol. 586, Springer-Verlag, Berlin, 1977, pp. 180–188.
[15] S.-S. Yu, Languages and Codes, Tsang Hai Book Publishing Co, Taichung, Taiwan, 2005.

	Relativized codes
	Introduction
	Notation and basic notions
	Relativizing codes
	Using coding partitions
	Relative solid codes
	Decoding messages over sets that are not comma-free
	Free subsemigroups of free semigroups

	Properties of relativized codes
	Conclusions
	Acknowledgements
	References

