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Abstract

In the paper, we continue our study on state complexity of combined opera-

tions. We study the state complexities of L∗
1 ∪ L∗

2,
k∪

i=1

L∗
i , L

∗
1 ∩ L∗

2, and
k∩

i=1

L∗
i

for regular languages Li, 1 ≤ i ≤ k. We obtain the exact bounds for these com-
bined operations and show that the bounds are different from the mathematical
compositions of the state complexities of their component individual operations.

Keywords: state complexity, combined operations, regular languages, finite
automata

1. Introduction

State complexity is a type of descriptional complexity based on finite au-
tomaton model. It is the study of the number of states of finite automata. The
research on state complexity can be recalled to 1950’s [20]. Up to today, mo-
tivated by new applications of regular languages that require automata of very
large sizes, state complexity has received increased attention. Many results on
the state complexity of individual operations, such as union, intersection, cate-
nation, star, reversal, shuffle, power, proportional removal, and cyclic shift have
been obtained [1, 4, 5, 6, 11, 13, 14, 15, 19, 24, 25, 26].

On the basis of these results on individual operations, the research on state
complexity of combined operations was initiated in 2007 [22]. This is because,
in practice, the operation to be performed is often a combination of several
individual operations in some order. Since 2007, there have been a number of
publications on the topic of state complexity of combined operations. Most of
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the papers focused on the combinations composed of two individual operations,
e.g. (L1 ∪ L2)

∗, (L1 ∩ L2)
∗, (L1L2)

∗, (L1 ∪ L2)
R, (L1 ∩ L2)

R, (L1L2)
R, etc [2,

3, 7, 8, 9, 10, 16, 17, 22]. These combinations can be viewed as basic combined
operations. The research on their state complexities is helpful for the work on
the combined operations whose structures are more complex.

The state complexity of a combined operation is usually not a simple mathe-
matical composition of the state complexities of its component individual oper-
ations, but much lower [22]. For example, let L be a regular language accepted
by an n-state deterministic finite automaton (DFA). The state complexity of L∗

is 3
42

n and the state complexity of LR of the reversal is 2n. Then the mathe-
matical composition of these two state complexities for the combined operation
(LR)∗ is 3

42
2n . However, the state complexity of (LR)∗ is only 2n [8]. Recently,

it has also been proved that there does not exist a general algorithm to compute
the state complexities of combined operations even if all the state complexities
of individual operations are known [23]. Thus, the state complexity of each
combined operation should be studied separately.

In [22], the state complexities of two combined operations were investigated:
(L(M)∪L(N))∗ and (L(M)∩L(N))∗, where M and N are m-state and n-state
DFAs, respectively. An interesting question is what are the state complexities of
these combined operations if we change the orders of the component individual
operations. Therefore, in this paper, we study the state complexities of four

particular combined operations that are L∗
1∪L∗

2,
k∪

i=1

L∗
i , L

∗
1∩L∗

2 and
k∩

i=1

L∗
i . The

combined operations L∗
1∪L∗

2 and L∗
1∩L∗

2 can be viewed as special cases of
k∪

i=1

L∗
i

and
k∩

i=1

L∗
i , respectively. Since they are not only basic combined operations but

also the basis for the study on the latter two operations on k operands, we
investigate their state complexities separately.

We show that the state complexities of L∗
1∪L∗

2 and L∗
1∩L∗

2 are both
9
162

m+n−
3
42

m− 3
42

n+2 for m, n ≥ 2, which are less than the mathematical compositions
of the state complexities of their component operations by 3

42
m + 3

42
n − 2. The

languages L1 and L2 are accepted by m-state and n-state DFAs, respectively.

For
k∪

i=1

L∗
i and

k∩
i=1

L∗
i , we prove that their state complexities are also the

same:

(
3

4
)k2g −

k∑
i=1

[

i−1∏
j=1

(
3

4
2nj − 1)

k∏
t=i+1

(
3

4
2nt)] + 1

for ni ≥ 2, where Li is an ni-state DFA language, 1 ≤ i ≤ k, k ≥ 2, and

g =
k∑

i=1

ni. The state complexities are less than the mathematical compositions

by
k∑

i=1

[
i−1∏
j=1

( 342
nj − 1)

k∏
t=i+1

( 342
nt)]− 1.

In the next section, we introduce the basic definitions and notations used in
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the paper. In Sections 3, 4, 5 and 6, we investigate the state complexities of

L∗
1 ∪L∗

2,
k∪

i=1

L∗
i , L

∗
1 ∩L∗

2, and
k∩

i=1

L∗
i , respectively. In Section 7, we conclude the

paper.

2. Preliminaries

A DFA is denoted by a 5-tuple A = (Q,Σ, δ, s, F ), where Q is the finite set
of states, Σ is the finite input alphabet, δ : Q × Σ → Q is the state transition
function, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. A DFA
is said to be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ. All the DFAs
we use in this paper are assumed to be complete. We extend δ to Q×Σ∗ → Q
in the usual way.

In this paper, the state transition function δ is often extended to δ̂ : 2Q×Σ →
2Q. The function δ̂ is defined by δ̂(R, a) = {δ(r, a) | r ∈ R}, for R ⊆ Q and

a ∈ Σ. We just write δ instead of δ̂ if there is no confusion.
A word w ∈ Σ∗ is accepted by a finite automaton if δ(s, w) ∩ F ̸= ∅. Two

states in a DFA A are said to be equivalent if and only if for every word w ∈ Σ∗,
if A is started in either state with w as input, it either accepts in both cases
or rejects in both cases. A language is said to be regular if and only if it is
accepted by a DFA. The language accepted by a DFA A is denoted by L(A).
The reader may refer to [12, 21, 27] for more details about regular languages
and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number
of states of the minimal complete DFA that accepts L. The state complexity
of a class S of regular languages, denoted by sc(S), is the supremum among all
sc(L), L ∈ S. The state complexity of an operation on regular languages is the
state complexity of the resulting languages from the operation as a function of
the state complexity of the operand languages. Thus, in a certain sense, the
state complexity of an operation is a worst-case complexity.

3. State complexity of L∗
1 ∪ L∗

2

We first consider the state complexity of L∗
1 ∪ L∗

2, where L1 and L2 are
regular languages accepted by m-state and n-state DFAs, respectively. It has
been proved that the state complexity of L∗

1 is 3
42

m and the state complexity of
L1 ∪ L2 is mn [18, 26]. The mathematical composition of them is 9

162
m+n. In

the following, we show this upper bound of the state complexity of L∗
1 ∪L∗

2 can
be lowered.

Theorem 3.1. For any m-state DFA M = (QM ,Σ, δM , sM , FM ) and n-state
DFA N = (QN ,Σ, δN , sN , FN ) such that |FM − {sM}| = k ≥ 1, |FN − {sN}| =
l ≥ 1, m ≥ 2, n ≥ 2, there exists a DFA of at most

(2m−1 + 2m−k−1)(2n−1 + 2n−l−1)− (2m−1 + 2m−k−1)− (2n−1 + 2n−l−1) + 2

states that accepts L(M)∗ ∪ L(N)∗.
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Proof. Let M = (QM ,Σ, δM , sM , FM ) be a DFA of m states, m ≥ 2. Denote
FM −{sM} by F0. Then |F0| = k ≥ 1. Let N = (QN ,Σ, δN , sN , FN ) be another
DFA of n states, n ≥ 2. Denote FN − {sN} by F1 and |F1| = l ≥ 1. Let
M ′ = (QM ′ ,Σ, δM ′ , sM ′ , FM ′) be a DFA where

sM ′ /∈ QM is a new initial state,

QM ′ = {sM ′} ∪ {P | P ⊆ (QM − F0) & P ̸= ∅}
∪{R | R ⊆ QM & sM ∈ R & R ∩ F0 ̸= ∅},

FM ′ = {sM ′} ∪ {R | R ⊆ QM & sM ∈ R & R ∩ FM ̸= ∅},

and for R ⊆ QM and a ∈ Σ,

δM ′(sM ′ , a) =

{
{δM (sM , a)}, if δM (sM , a) ∩ F0 = ∅;
{δM (sM , a)} ∪ {sM}, otherwise,

δM ′(R, a) =

{
{δM (R, a)}, if δM (R, a) ∩ F0 = ∅;
{δM (R, a)} ∪ {sM}, otherwise.

It is clear that M ′ accepts L(M)∗. In the second term of the union for QM ′

there are 2m−k − 1 states. And in the third term, there are (2k − 1)2m−k−1

states. So M ′ has 2m−1 + 2m−k−1 states in total.
Symmetrically, we can construct a DFA N ′ = (QN ′ ,Σ, δN ′ , sN ′ , FN ′) of

2n−1 + 2n−l−1 states that accepts L(N)∗. Now we construct another DFA
A = (Q,Σ, δ, s, F ) where

s = ⟨sM ′ , sN ′⟩,
Q = {⟨i, j⟩ | i ∈ QM ′ − {sM ′}, j ∈ QN ′ − {sN ′}} ∪ {s},
δ(⟨i, j⟩, a) = ⟨δM ′(i, a), δN ′(j, a)⟩, ⟨i, j⟩ ∈ Q, a ∈ Σ,

F = {⟨i, j⟩ ∈ Q | i ∈ FM ′ or j ∈ FN ′}.

We can see that

L(A) = L(M ′) ∪ L(N ′) = L(M)∗ ∪ L(N)∗.

Note ⟨sM ′ , j⟩ /∈ Q, for j ∈ QN ′ − {sN ′}, and ⟨i, sN ′⟩ /∈ Q, for i ∈ QM ′ − {sM ′},
because there is no transition going into sM ′ and sN ′ in the DFA M ′ and N ′,
respectively. There are (2m−1 + 2m−k−1) + (2n−1 + 2n−l−1) − 2 such states.
Thus, the number of states of minimal DFA that accepts L(M)∗ ∪ L(N)∗ is no
more than

(2m−1 + 2m−k−1)(2n−1 + 2n−l−1)− (2m−1 + 2m−k−1)− (2n−1 + 2n−l−1) + 2.

If sM and sN are the only final states of M and N , respectively, (k = l = 0),
then L(M)∗ = L(M) and L(N)∗ = L(N).
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Corollary 3.1. For any m-state DFA M = (QM ,Σ, δM , sM , FM ) and n-state
DFA N = (QN ,Σ, δN , sN , FN ), m ≥ 2, n ≥ 2, there exists a DFA A of at most

9

16
2m+n − 3

4
2m − 3

4
2n + 2

states such that L(A) = L(M)∗ ∪ L(N)∗.

Proof. Let k and l be defined as in the previous proof. There are four cases in
the following.

(I) k = l = 0. In this case, L(M)∗ = L(M) and L(N)∗ = L(N). Then A
simply needs at mostm·n states, which is less than 9

162
m+n− 3

42
m− 3

42
n+2

when m,n ≥ 2.

(II) k ≥ 1, l = 0. We can see that L(M)∗ ∪ L(N)∗ = L(M)∗ ∪ L(N). The
state complexity of L(M)∗ ∪L(N) has been proved to be 3

42
m · n− n+ 1

in [10] which is less than the upper bound in Corollary 3.1 when m,n ≥ 2.

(III) k = 0, l ≥ 1. The case is symmetric to Case (II).

(IV) k ≥ 1, l ≥ 1. The claim is clearly true by Theorem 3.1.

Next, we show that the upper bound 9
162

m+n− 3
42

m− 3
42

n+2 can be reached
when m,n ≥ 2.

Theorem 3.2. Given two integers m ≥ 2, n ≥ 2, there exist a DFA M of m
states and a DFA N of n states such that any DFA accepting L(M)∗ ∪ L(N)∗

needs at least
9

16
2m+n − 3

4
2m − 3

4
2n + 2

states.

Proof. Let M = (QM ,Σ, δM , 0, {m− 1}) be a DFA, where QM = {0, 1, . . . ,m−
1}, Σ = {a, b, c, d} and the transitions of M are

δM (i, a) = i+ 1 mod m, i = 0, 1, . . . ,m− 1,

δM (0, b) = 0, δM (i, b) = i+ 1 mod m, i = 1, . . . ,m− 1,

δM (i, c) = i, i = 0, 1, . . . ,m− 1,

δM (i, d) = i, i = 0, 1, . . . ,m− 1.

The transition diagram of M is shown in Figure 1.
Let N = (QN ,Σ, δN , 0, {n− 1}) be another DFA, where QN = {0, 1, . . . , n− 1}
and

δN (i, a) = i, i = 0, 1, . . . , n− 1,

δN (i, b) = i, i = 0, 1, . . . , n− 1,

δN (i, c) = i+ 1 mod n, i = 0, 1, . . . , n− 1,

δN (0, d) = 0, δM (i, d) = i+ 1 mod n, i = 1, . . . , n− 1.
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Figure 1: Witness DFA M for Theorems 3.2 and 5.2

Figure 2: Witness DFA N for Theorems 3.2 and 5.2

The transition diagram of N is shown in Figure 2.
It has been proved in [26] that the minimal DFA that accepts the star of an

m-state DFA language has 3
42

m states in the worst case. M (N) is a modification
of the worst-case example given in [26] by adding c- and d-loops (a- and b-
loops) to every state. So we can design a 3

42
m-state, minimal DFA M ′ =

(QM ′ ,Σ, δM ′ , sM ′ , FM ′) that accepts L(M)∗, where

sM ′ /∈ QM is a new initial state,

QM ′ = {sM ′} ∪ {P | P ⊆ {0, 1, . . . ,m− 2} & P ̸= ∅}
∪{R | R ⊆ {0, 1, . . . ,m− 1} & 0 ∈ R & m− 1 ∈ R},

FM ′ = {sM ′} ∪ {R ∈ QM ′ | R ⊆ {0, 1, . . . ,m− 1} & m− 1 ∈ R},

and for R ⊆ QM , R ∈ QM ′ and a ∈ Σ,

δM ′(sM ′ , a) = {δM (0, a)},

δM ′(R, a) =

{
δM (R, a), if m− 1 /∈ δM (R, a);
δM (R, a) ∪ {0}, otherwise.

In a similar way, a 3
42

n-state, minimal DFA N ′ = (QN ′ ,Σ, δN ′ , sN ′ , FN ′) can be
constructed to accept L(N)∗.

Then we construct the DFA A = (Q,Σ, δ, s, F ) that accepts L(M)∗ ∪L(N)∗

6



exactly as described in the proof of Theorem 3.1, where

s = ⟨sM ′ , sN ′⟩,
Q = {⟨i, j⟩ | i ∈ QM ′ − {sM ′}, j ∈ QN ′ − {sN ′}} ∪ {s},
δ(⟨i, j⟩, a) = ⟨δM ′(i, a), δN ′(j, a)⟩, ⟨i, j⟩ ∈ Q, a ∈ Σ,

F = {⟨i, j⟩ ∈ Q | i ∈ FM ′ or j ∈ FN ′}.

Now we need to show that A is a minimal DFA.

(I) All the states in Q are reachable.
For an arbitrary state ⟨i, j⟩ in Q, there always exists a string w1w2 such
that δ(⟨sM ′ , sN ′⟩, w1w2) = ⟨i, j⟩, where

δM ′(sM ′ , w1) = i, w1 ∈ {a, b}∗,
δN ′(sN ′ , w2) = j, w2 ∈ {c, d}∗.

(II) Any two different states ⟨i1, j1⟩ and ⟨i2, j2⟩ in Q are distinguishable. With-
out loss of generality, assume that i1 ̸= i2. Since i1, i2 ∈ QM ′ , there exists
a word w such that δM ′(i1, w) ∈ FM ′ and δM ′(i2, w) /∈ FM ′ . Then the two
states ⟨i1, j1⟩ and ⟨i2, j2⟩ can be distinguished by the string wdn because

δ(⟨i1, j1⟩, wdn) ∈ F,

δ(⟨i2, j2⟩, wdn) /∈ F,

Since all the states inA are reachable and distinguishable, the DFAA is minimal.
Thus, any DFA that accepts L(M)∗∪L(N)∗ has at least 9

162
m+n− 3

42
m− 3

42
n+2

states.

This result gives a lower bound for the state complexity of L(M)∗ ∪L(N)∗.
It coincides with the upper bound in Corollary 3.1. So we have the following
Theorem 3.3.

Theorem 3.3. For any integer m ≥ 2, n ≥ 2, 9
162

m+n − 3
42

m − 3
42

n + 2
states are both sufficient and necessary in the worst case for a DFA to accept
L(M)∗ ∪ L(N)∗, where M is an m-state DFA and N is an n-state DFA.

When m = 1, n ≥ 2, L(M) is either ∅ or Σ∗. Then the state complexity of
L(M)∗ ∪ L(N)∗ is the same as that of L(N)∗ which is 3

42
n. When m = n = 1,

L(M)∗ ∪ L(N)∗ =

{
{ε}, if L(M) = L(N) = ∅;
Σ∗, otherwise.

The state complexity of L(M)∗ ∪ L(N)∗ is 2 in this case.
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4. State complexity of
k∪

i=1

L∗
i

In this section, we investigate the state complexity of
k∪

i=1

L∗
i , where Li is

a regular language accepted by an ni-state DFA, 1 ≤ i ≤ k, k ≥ 2. Since
the state complexity of L∗

i is 3
42

ni and the state complexity of Li ∪ Li+1 is
nini+1 [18, 26], the mathematical composition of them gives an upper bound
k∏

i=1

3
42

ni to the state complexity of
k∪

i=1

L∗
i . In the following, we first show that

the upper bound can also be lowered.

Theorem 4.1. For any ni-state DFA Ni = (QNi ,Σ, δNi , sNi , FNi) such that
|FNi − {sNi}| = li ≥ 1, ni ≥ 2, 1 ≤ i ≤ k, k ≥ 2, there exists a DFA of at most

k∏
i=1

(2ni−1+2ni−li−1)−
k∑

i=1

[
i−1∏
j=1

(2nj−1+2nj−lj−1−1)
k∏

t=i+1

(2nt−1+2nt−lt−1)]+1

states that accepts
k∪

i=1

L(Ni)
∗.

Proof. Let Ni = (QNi ,Σ, δNi , sNi , FNi) be a DFA of ni states, ni ≥ 2, 1 ≤ i ≤ k,
k ≥ 2. Denote FNi − {sNi} by Ti. Then |Ti| = li ≥ 1. We construct the DFA
N ′

i = (QN ′
i
,Σ, δN ′

i
, sN ′

i
, FN ′

i
) for L(Ni)

∗ in a similar manner to the proof of
Theorem 3.1, where

sN ′
i
/∈ QNi is a new initial state,

QN ′
i
= {sN ′

i
} ∪ {P | P ⊆ (QNi − Ti) & P ̸= ∅}

∪{R | R ⊆ QNi & sNi ∈ R & R ∩ Ti ̸= ∅},
FN ′

i
= {sN ′

i
} ∪ {R | R ⊆ QNi

& sNi
∈ R & R ∩ FNi

̸= ∅},

and for R ⊆ QNi , R ∈ QN ′
i
and a ∈ Σ,

δN ′
i
(sN ′

i
, a) =

{
{δNi(sNi , a)}, if δNi(sNi , a) ∩ Ti = ∅;
{δNi(sNi , a)} ∪ {sNi}, otherwise,

δN ′
i
(R, a) =

{
{δNi(R, a)}, if δNi(R, a) ∩ Ti = ∅;
{δNi(R, a)} ∪ {sNi}, otherwise.

Clearly, N ′
i accepts L(Ni)

∗. There are 2ni−li − 1 states in the second term of
the union for QN ′

i
and (2li − 1)2ni−li−1 states in the third term. So N ′

i has

2ni−1 + 2ni−li−1 states in total.
Now let A = (Q,Σ, δ, s, F ) be another DFA, where

s = ⟨sN ′
1
, sN ′

2
, . . . , sN ′

k
⟩,

Q = {⟨p1, p2, . . . , pk⟩ | pi ∈ QN ′
i
− {sN ′

i
}, 1 ≤ i ≤ k} ∪ {s},

δ(⟨p1, p2, . . . , pk⟩, a) = ⟨δN ′
1
(p1, a), δN ′

2
(p2, a), . . . , δN ′

k
(pk, a)⟩, a ∈ Σ,

F = {⟨p1, p2, . . . , pk⟩ ∈ Q | ∃i(pi ∈ FN ′
i
, 1 ≤ i ≤ k)}.

8



It is easy to see that

L(A) =

k∪
i=1

L(N ′
i) =

k∪
i=1

L(Ni)
∗.

Note that the state ⟨p1, . . . , pi−1, sN ′
i
, pi+1, . . . , pk⟩ /∈ Q if pj ∈ QN ′

j
− {sN ′

j
},

1 ≤ i, j ≤ k, j ̸= i, because there is no ingoing transition to the new initial state
sN ′

i
in the DFA N ′

i . There are

k∑
i=1

[

i−1∏
j=1

(2nj−1 + 2nj−lj−1 − 1)

k∏
t=i+1

(2nt−1 + 2nt−lt−1)]− 1

such states in total. Thus, we obtain the upper bound shown in Theorem 4.1.

Next, we consider the case when li = 0, 1 ≤ i ≤ k, combine it with Theo-
rem 4.1, and get a general upper bound.

Corollary 4.1. Let Ni = (QNi ,Σ, δNi , sNi , FNi) be an arbitrary ni-state DFA,

where ni ≥ 2, 1 ≤ i ≤ k, k ≥ 2. Denote
k∑

i=1

ni by g. Then there exists a DFA

of at most

(
3

4
)k2g −

k∑
i=1

[
i−1∏
j=1

(
3

4
2nj − 1)

k∏
t=i+1

(
3

4
2nt)] + 1

states that accepts
k∪

i=1

L(Ni)
∗.

Proof. Let li be defined as in the proof of Theorem 4.1. When li = 0, sNi is
the only final state in Ni and we know that L(Ni)

∗ = L(Ni). Thus, in the

construction of the resulting DFA A for
k∪

i=1

L(Ni)
∗, the DFA Ni can be used to

replace N ′
i , which reduces the size of the state set of A. When every li ≥ 1, the

corollary is true by Theorem 4.1.

Next, we show that the upper bound in Theorem 4.1 is reachable when every
ni ≥ 2.

Theorem 4.2. Given an integer ni ≥ 2, there exists a DFA Ni of ni states

such that any DFA accepting
k∪

i=1

L(Ni)
∗ needs at least

(
3

4
)k2g −

k∑
i=1

[
i−1∏
j=1

(
3

4
2nj − 1)

k∏
t=i+1

(
3

4
2nt)] + 1

states, where 1 ≤ i ≤ k, k ≥ 2, and g =
k∑

i=1

ni.

9



Proof. Let Ni = (QNi
,Σ, δNi

, 0, {ni−1}) be a DFA, where QNi
= {0, 1, . . . , ni−

1}, Σ = {ai,j | 1 ≤ i ≤ k, j ∈ {1, 2}} and the transitions of Ni are

δNi(p, ai,1) = p+ 1 mod ni, p = 0, 1, . . . , ni − 1,

δNi
(0, ai,2) = 0, δNi

(p, ai,2) = p+ 1 mod ni, p = 1, . . . , ni − 1,

δNi(p, c) = p, c ∈ Σ− {ai,1, ai,2}, p = 0, 1, . . . , ni − 1.

The transition diagram of Ni is similar to Figure 1.
As we mentioned before, it has been shown in [26] that the minimal DFA

that accepts the star of an ni-state DFA language has 3
42

ni states in the worst
case. Ni is also a modification of the witness DFA shown in [26] by adding
c-loops to every state, where c ∈ Σ−{ai,1, ai,2}. So we can design a 3

42
ni-state,

minimal DFA N ′
i = (QN ′

i
,Σ, δN ′

i
, sN ′

i
, FN ′

i
) that accepts L(Ni)

∗, where

sN ′
i
/∈ QNi is a new initial state,

QN ′
i
= {sN ′

i
} ∪ {P | P ⊆ {0, 1, . . . , ni − 2} & P ̸= ∅}

∪{R | R ⊆ {0, 1, . . . , ni − 1} & 0 ∈ R & ni − 1 ∈ R},
FN ′

i
= {sN ′

i
} ∪ {R ∈ QN ′

i
| R ⊆ {0, 1, . . . , ni − 1} & ni − 1 ∈ R},

and for R ⊆ QNi , R ∈ QN ′
i
and a ∈ Σ,

δN ′
i
(sN ′

i
, a) = {δNi(0, a)},

δN ′
i
(R, a) =

{
δNi(R, a), if ni − 1 /∈ δNi(R, a);
δNi(R, a) ∪ {0}, otherwise.

Then we construct the DFA A = (Q,Σ, δ, s, F ) that accepts
k∪

i=1

L(Ni)
∗ ex-

actly as described in the proof of Theorem 4.1, where

s = ⟨sN ′
1
, sN ′

2
, . . . , sN ′

k
⟩,

Q = {⟨p1, p2, . . . , pk⟩ | pi ∈ QN ′
i
− {sN ′

i
}, 1 ≤ i ≤ k} ∪ {s},

δ(⟨p1, p2, . . . , pk⟩, a) = ⟨δN ′
1
(p1, a), δN ′

2
(p2, a), . . . , δN ′

k
(pk, a)⟩, a ∈ Σ,

F = {⟨p1, p2, . . . , pk⟩ ∈ Q | ∃i(pi ∈ FN ′
i
, 1 ≤ i ≤ k)}.

In the following, we show that the DFA A is minimal.

(I) All the states in Q are reachable.
For an arbitrary state ⟨p1, p2, . . . , pk⟩ in Q, there always exists a string
w1w2 · · ·wk such that δ(s, w1w2 · · ·wk) = ⟨p1, p2, . . . , pk⟩, where

δN ′
i
(sN ′

i
, wi) = pi, wi ∈ {ai,1, ai,2}∗, 1 ≤ i ≤ k.

(II) Any two different states ⟨p1, p2, . . . , pk⟩ and ⟨q1, q2, . . . , qk⟩ in Q are dis-
tinguishable.
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Without loss of generality, we assume that pi ̸= qi, 1 ≤ i ≤ k. Then there
exists a word wi such that

δ(⟨p1, p2, . . . , pk⟩, an1
1,2a

n2
2,2 · · · a

ni−1

i−1,2wia
ni+1

i+1,2 · · · a
nk

k,2) ∈ F,

δ(⟨q1, q2, . . . , qk⟩, an1
1,2a

n2
2,2 · · · a

ni−1

i−1,2wia
ni+1

i+1,2 · · · a
nk

k,2) /∈ F.

where wi ∈ {ai,1, ai,2}∗, δN ′
i
(pi, wi) ∈ FN ′

i
and δN ′

i
(qi, wi) /∈ FN ′

i
.

Since all the states in A are reachable and pairwise distinguishable, A is a

minimal DFA. Thus, any DFA that accepts
k∪

i=1

L(Ni)
∗ has at least ( 34 )

k2g −
k∑

i=1

[
i−1∏
j=1

( 342
nj − 1)

k∏
t=i+1

( 342
nt)] + 1 states, where g =

k∑
i=1

ni.

This lower bound coincides with the upper bound in Corollary 4.1. Thus,
we obtain Theorem 4.3.

Theorem 4.3. For any integer ni ≥ 2,

(
3

4
)k2g −

k∑
i=1

[
i−1∏
j=1

(
3

4
2nj − 1)

k∏
t=i+1

(
3

4
2nt)] + 1

states are both sufficient and necessary in the worst case for a DFA to accept
k∪

i=1

L(Ni)
∗, where Ni is an ni-state DFA, 1 ≤ i ≤ k, k ≥ 2, and g =

k∑
i=1

ni.

5. State complexity of L∗
1 ∩ L∗

2

The state complexity of intersection on regular languages has been proved
to be the same as that of union [18, 26]. Thus, the mathematical composition
of the state complexities of star and intersection for L(M)∗ ∩ L(N)∗ is also
9
162

m+n. In this section, we show that the state complexity of L(M)∗ ∩ L(N)∗

is 9
162

m+n − 3
42

m − 3
42

n + 2 which is the same as the state complexity of the
combined operation L(M)∗ ∪ L(N)∗.

Theorem 5.1. For any m-state DFA M = (QM ,Σ, δM , sM , FM ) and n-state
DFA N = (QN ,Σ, δN , sN , FN ) such that |FM − {sM}| = k ≥ 1, |FN − {sN}| =
l ≥ 1, m ≥ 2, n ≥ 2, there exists a DFA of at most

(2m−1 + 2m−k−1)(2n−1 + 2n−l−1)− (2m−1 + 2m−k−1)− (2n−1 + 2n−l−1) + 2

states that accepts L(M)∗ ∩ L(N)∗.

Proof. We can construct the DFA A for L(M)∗ ∩ L(N)∗ which is the same as
in the proof of Theorem 3.1, except that the set of final states of A is

F = {⟨i, j⟩ ∈ Q | i ∈ FM ′ & j ∈ FN ′}.

11



Thus, after removing the (2m−1 + 2m−k−1) + (2n−1 + 2n−l−1)− 2 unreachable
states ⟨sM ′ , j⟩ /∈ Q, for j ∈ QN ′ −{sN ′}, and ⟨i, sN ′⟩ /∈ Q, for i ∈ QM ′ −{sM ′},
the number of states of A is still no more than

(2m−1 + 2m−k−1)(2n−1 + 2n−l−1)− (2m−1 + 2m−k−1)− (2n−1 + 2n−l−1) + 2.

Now we consider the cases when M or N has no other final state except
sM or sN . The following corollary shows a general upper bound of the state
complexity of L(M)∗ ∩ L(N)∗.

Corollary 5.1. For any m-state DFA M = (QM ,Σ, δM , sM , FM ) and n-state
DFA N = (QN ,Σ, δN , sN , FN ), m ≥ 2, n ≥ 2, there exists a DFA A of at most

9

16
2m+n − 3

4
2m − 3

4
2n + 2

states such that L(A) = L(M)∗ ∩ L(N)∗.

Proof. Let k and l be |FM − {sM}| and |FN − {sN}|, respectively. In a similar
manner to the proof of Corollary 3.1, we have

L(M)∗ ∩ L(N)∗ =

 L(M) ∩ L(N), if k = l = 0;
L(M)∗ ∩ L(N), if k ≥ 1 and l = 0;
L(M) ∩ L(N)∗, if k = 0 and l ≥ 1;

Clearly, the third case above is symmetric to the second case. The state com-
plexities of L(M) ∩ L(N) and L(M)∗ ∩ L(N) are mn and 3

42
m · n − n + 1,

respectively [10, 18, 26]. They are both less than the upper bound shown in
Corollary 5.1. When k, l ≥ 1, the corollary also holds by Theorem 5.1.

Next, we show that this general upper bound of state complexity of L(M)∗∩
L(N)∗ can be reached by some witness DFAs.

Theorem 5.2. Given two integers m ≥ 2, n ≥ 2, there exist a DFA M of m
states and a DFA N of n states such that any DFA accepting L(M)∗ ∩ L(N)∗

needs at least 9
162

m+n − 3
42

m − 3
42

n + 2 states.

Proof. We use the same DFAs M and N as in the proof of Theorem 3.2.
Their transition diagrams are shown in Figure 1 and Figure 2, respectively.
Construct the DFA M ′ = (QM ′ ,Σ, δM ′ , sM ′ , FM ′) for L(M)∗ and the DFA
N ′ = (QN ′ ,Σ, δN ′ , sN ′ , FN ′) for L(N)∗ in the same way as in the proof of The-
orem 3.2.

Then we construct the DFA A = (Q,Σ, δ, s, F ) that accepts L(M)∗ ∩L(N)∗

exactly as described in the proof of Theorem 3.2 except that

F = {⟨i, j⟩ ∈ Q | i ∈ FM ′ & j ∈ FN ′}.

In the following, we will prove that A is a minimal DFA. We omit the proof
for the reachability of an arbitrary state ⟨i, j⟩ in A, because it is the same as
that in the proof of Theorem 3.2. Next, let us prove that any two different
states ⟨i1, j1⟩ and ⟨i2, j2⟩ of A are distinguishable.

12



1. i1 ̸= i2.

We can find a string w1w2 such that

δ(⟨i1, j1⟩, w1w2) ∈ F,

δ(⟨i2, j2⟩, w1w2) /∈ F,

where

δM ′(i1, w1) ∈ FM ′ , δM ′(i2, w1) /∈ FM ′ , w1 ∈ {a, b}∗,
δN ′(j1, w2) ∈ FN ′ , w2 ∈ {c, d}∗.

2. i1 = i2, j1 ̸= j2.

There exists a string w1w2 such that

δ(⟨i1, j1⟩, w1w2) ∈ F,

δ(⟨i2, j2⟩, w1w2) /∈ F,

where

δM ′(i1, w1) ∈ FM ′ , w1 ∈ {a, b}∗,
δN ′(j1, w2) ∈ FN ′ , δN ′(j2, w2) /∈ FN ′ , w2 ∈ {c, d}∗.

Since every state of A is reachable from its initial state and all the states are
pairwise distinguishable, A is a minimal DFA with 9

162
m+n − 3

42
m − 3

42
n + 2

states which accepts L(M)∗ ∩ L(N)∗.

This lower bound coincides with the upper bound in Corollary 5.1. Thus,
the bounds are tight.

Theorem 5.3. For any integer m ≥ 2, n ≥ 2, 9
162

m+n − 3
42

m − 3
42

n + 2
states are both sufficient and necessary in the worst case for a DFA to accept
L(M)∗ ∩ L(N)∗, where M is an m-state DFA and N is an n-state DFA.

When m = 1, n ≥ 2, the state complexity of L(M)∗ ∩ L(N)∗ is the same as
that of L(N)∗ which is 3

42
n, because L(M) is either ∅ or Σ∗ in this case. When

m = n = 1,

L(M)∗ ∩ L(N)∗ =

{
{ε}, if L(M) = ∅ or L(N) = ∅;
Σ∗, otherwise.

Then the state complexity of L(M)∗ ∩ L(N)∗ is clearly 2 when m = n = 1.

6. State complexity of
k∩

i=1

L∗
i

Next, we will investigate the state complexity of
k∩

i=1

L∗
i , where Li is an ni-

state DFA language, 1 ≤ i ≤ k, k ≥ 2. The mathematical composition of the

13



component operations of this combined operation is
k∏

i=1

3
42

ni which is the same

as that of
k∪

i=1

L∗
i . This upper bound can also be lowered.

Theorem 6.1. For any ni-state DFA Ni = (QNi ,Σ, δNi , sNi , FNi) such that
|FNi

− {sNi
}| = li ≥ 1, ni ≥ 2, 1 ≤ i ≤ k, k ≥ 2, there exists a DFA of at most

k∏
i=1

(2ni−1+2ni−li−1)−
k∑

i=1

[
i−1∏
j=1

(2nj−1+2nj−lj−1−1)
k∏

t=i+1

(2nt−1+2nt−lt−1)]+1

states that accepts
k∩

i=1

L(Ni)
∗.

Proof. The DFA A for
k∩

i=1

L(Ni)
∗ can be constructed in a same way as in the

proof of Theorem 4.1, except that the set of final states of A is

F = {⟨p1, p2, . . . , pk⟩ ∈ Q | ∀i(pi ∈ FN ′
i
, 1 ≤ i ≤ k)}.

Thus, the number of states of A is no more than the upper bound shown in

Theorem 6.1 which is the same as that for the state complexity of
k∪

i=1

L(Ni)
∗ in

Theorem 4.1.

In a similar manner to the proof of Corollary 4.1, we obtain the following
corollary on the basis of Theorem 6.1, by considering the cases when Ni has no
other final state except sNi (L(Ni)

∗ = L(Ni)).

Corollary 6.1. Let Ni = (QNi ,Σ, δNi , sNi , FNi) be an arbitrary ni-state DFA,

where ni ≥ 2, 1 ≤ i ≤ k, k ≥ 2. Denote
k∑

i=1

ni by g. Then there exists a DFA

of at most

(
3

4
)k2g −

k∑
i=1

[
i−1∏
j=1

(
3

4
2nj − 1)

k∏
t=i+1

(
3

4
2nt)] + 1

states that accepts
k∩

i=1

L(Ni)
∗.

Next, we show that the upper bound in Theorem 6.1 can be reached when
every ni ≥ 2.

Theorem 6.2. Given an integer ni ≥ 2, there exists a DFA Ni of ni states

such that any DFA accepting
k∩

i=1

L(Ni)
∗ needs at least

(
3

4
)k2g −

k∑
i=1

[
i−1∏
j=1

(
3

4
2nj − 1)

k∏
t=i+1

(
3

4
2nt)] + 1
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states, where 1 ≤ i ≤ k, k ≥ 2, and g =
k∑

i=1

ni.

Proof. We use the same DFA Ni as in the proof of Theorem 4.2. Construct the
DFA N ′

i = (QN ′
i
,Σ, δN ′

i
, sN ′

i
, FN ′

i
) for L(Ni)

∗ in the same way as in the proof of
Theorem 4.2.

Then we construct the DFA A = (Q,Σ, δ, s, F ) that accepts L(M)∗ ∩L(N)∗

exactly as described in the proof of Theorem 4.2 except that

F = {⟨p1, p2, . . . , pk⟩ ∈ Q | ∀i(pi ∈ FN ′
i
, 1 ≤ i ≤ k)}.

Now we will show that A is minimal. The proof for the reachability of an
arbitrary state in A is omitted, because it is the same as that in the proof of
Theorem 4.2. Thus, we prove that any two different states ⟨p1, p2, . . . , pk⟩ and
⟨q1, q2, . . . , qk⟩ of A are distinguishable in the following.

Without loss of generality, we assume that pi ̸= qi, 1 ≤ i ≤ k. Then there
exists a word w1w2 · · ·wk such that

δ(⟨p1, p2, . . . , pk⟩, w1w2 · · ·wk) ∈ F,

δ(⟨q1, q2, . . . , qk⟩, w1w2 · · ·wk) /∈ F.

where

wj ∈ {aj,1, aj,2}∗, δN ′
j
(pj , wj) ∈ FN ′

j
, 1 ≤ j ≤ k, j ̸= i,

wi ∈ {ai,1, ai,2}∗, δN ′
i
(pi, wi) ∈ FN ′

i
, δN ′

i
(qi, wi) /∈ FN ′

i
.

Since all the states in A can be reached and are pairwise distinguishable,

the DFA A is minimal. Thus, any DFA that accepts
k∩

i=1

L(Ni)
∗ has at least

( 34 )
k2g −

k∑
i=1

[
i−1∏
j=1

( 342
nj − 1)

k∏
t=i+1

( 342
nt)] + 1 states, where g =

k∑
i=1

ni.

This lower bound coincides with the upper bound in Corollary 6.1. Thus,

we obtain the state complexity of
k∩

i=1

L(Ni)
∗.

Theorem 6.3. For any integer ni ≥ 2,

(
3

4
)k2g −

k∑
i=1

[
i−1∏
j=1

(
3

4
2nj − 1)

k∏
t=i+1

(
3

4
2nt)] + 1

states are both sufficient and necessary in the worst case for a DFA to accept
k∩

i=1

L(Ni)
∗, where Ni is an ni-state DFA, 1 ≤ i ≤ k, k ≥ 2, and g =

k∑
i=1

ni.
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7. Conclusion

In this paper, we studied the state complexities of union of star and inter-
section of star. We obtained the state complexities of four particular combined

operations that are L∗
1 ∪ L∗

2,
k∪

i=1

L∗
i , L

∗
1 ∩ L∗

2 and
k∩

i=1

L∗
i where Li is an ni-state

DFA language, ni ≥ 2, 1 ≤ i ≤ k, and k ≥ 2. The state complexities of these
combined operations are all less than the mathematical compositions of the
state complexities of their component individual operations.

Comparing with other known state complexities of combined operations, it
is interesting to see that the state complexities of L∗

1 ∪ L2 and L∗
1 ∩ L2 are the

same, and L∗
1 ∪ L∗

2 and L∗
1 ∩ L∗

2 share the same state complexity, whereas the
state complexities of (L1 ∪ L2)

∗ and (L1 ∩ L2)
∗ are different.

One possible, future topic could be the state complexities of
k∪

i=1

L∗
i and

k∩
i=1

L∗
i

on a smaller, fixed alphabet when k is also fixed. We also expect more results
on the state complexities of combined operations on k regular languages, which
are more general and closer to the nature of combined operations.
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[7] Z. Ésik, Y. Gao, G. Liu, S. Yu: Estimation of state complexity of combined
operations, Theoretical Computer Science 410 (35) (2009) 3272-3280

[8] Y. Gao, K. Salomaa, S. Yu: The state complexity of two combined opera-
tions: star of catenation and star of Reversal, Fundamenta Informaticae 83
(1-2) (2008) 75-89

16



[9] Y. Gao and S. Yu: State complexity approximation, in:Proceedings of De-
scriptional Complexity of Formal Systems Magdeburg, Germany, 2009, 163-
174

[10] Y. Gao and S. Yu: State complexity of four combined operations composed
of union, intersection, star and reversal, Proceedings of Descriptional Com-
plexity of Formal Systems, Limburg, Gemany, July 25-27, 2011, LNCS 6808,
158-171

[11] M. Holzer, M. Kutrib: State complexity of basic operations on nonde-
terministic finite automata, in: Proceedings of International Conference on
Implementation and Application of Automata 2002, LNCS 2608, 2002, 148-
157

[12] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata The-
ory, Languages, and Computation (2nd Edition), Addison Wesley, 2001
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