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31.1 Introduction

During the last decades, we have witnessed exciting new developments in computation theory
and practice, from entirely novel perspectives. DNA Computing, known also under the names of
molecular computing, biocomputing, or biomolecular computing, is an emergent field lying at the
crossroads of computer science and molecular biology. It is based on the idea that data can be
encoded as DNA strands, and molecular biology tools can be used to perform arithmetic and logic
operations.
This chapter intends to give the reader a basic understanding of the tools and methods used in

DNA computing, and a snapshot of theoretical and experimental research in this field. It includes
descriptions of a representative DNA computing experiment, of the design of autonomous and
programmable molecular computers, and of models of DNA memories. It describes research into
computation in and by living cells, as well as into DNA self-assembly, a process that can be used
for computation or can produce either static DNA nanostructures or dynamic DNA nanomachines.
This chapter is intended to offer the reader a glimpse of the astonishing world of DNA computing,
rather than being an exhaustive review of the research in the field.

31-1
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31-2 Special Topics and Techniques

The chapter is organized as follows.∗ Section 31.2 introduces basic molecular biology notions
about DNA as an information-encoding medium, and the bio-operations that can be performed
on DNA strands. As a representative example of a DNA bio-algorithm, in which a computational
problem is solved exclusively by bio-operations performed on DNA strands in test tubes, Section
31.3 describes an experiment demonstrated by Adleman’s team, that solved a 20-variable instance of
the 3-SAT problem. Section 31.4 exemplifies the research on molecular autonomous programmable
DNA computers by the description of Benenson automata and their potential applications to smart
drug design. Section 31.5 presents research into DNA memory technology such as nested primer
molecular memory (Section 31.5.1), and organic DNA memory (Section 31.5.2), as well as explores
the topic of optimal DNA sequence design for DNA computing purposes (Section 31.5.3). Section
31.6 explores the fascinating possibilities offered by in vivo computing, that is, computation in and
by living cells, as well as the potential insights it could offer into understanding the computational
processes in nature. Section 31.7 describes one of the most important directions of research in DNA
computing, with significant implications for the rapidly evolving field of nanotechnology: DNA
computing by self-assembly. It includes descriptions of experimental computation by self-assembly
(Section 31.7.1), of static intricate DNA nanostructures (Section 31.7.2), and of impressive DNA
nanomachines (Section 31.7.3). Finally, Section 31.8 offers conclusions and brief comments on the
latest developments in the field of DNA computing.

31.2 Molecular Biology Basics

This chapter was written with the expectation that the reader is a computer scientist with a limited
knowledge of biology. This section provides the basic notions of molecular biology (DNA structure
and DNA bio-operations) necessary for understanding the text.
DNA (deoxyribonucleic acid) is found in every cellular organism as the storage medium for

genetic information, [39]. DNA is a polymer whosemonomer units are nucleotides, and the polymer
is known as a “polynucleotide.” More precisely, DNA is a linear chain made up of four different
types of nucleotides, each consisting of a base (Adenine, Cytosine, Guanine, or Thymine) and a
sugar-phosphate unit. The sugar-phosphate units are linked together by covalent bonds to form the
backbone of the DNA single strand. Since nucleotides may differ only by their bases, a DNA strand
can be viewed as simply a word over the four-letter alphabet {A, C, G, T}. A DNA single strand
has an orientation, with one end known as the 5′ end, and the other as the 3′ end, based on their
chemical properties. By convention, a word over the DNA alphabet represents the corresponding
DNA single strand in the 5′ −→ 3′ orientation, that is, GGTTTTT stands for the DNA single strand
5′-GGTTTTT-3′. A short single-stranded polynucleotide chain, usually less than 20 nucleotides
long, is called an oligonucleotide. A DNA strand is sometimes called an n-mer, where n signifies its
length, that is, the number of its nucleotide monomers.
A crucial feature of DNA single strands is theirWatson–Crick complementarity, [91]: A is comple-

mentary to T, and G is complementary to C. Two complementary DNA single strands with opposite
orientationwill bind to each other by hydrogen bonds between their individual bases to form a stable
DNA double strand with the backbones at the outside and the bound pairs of bases lying inside. In
a DNA double strand, two complementary bases situated on opposite strands, and bound together
by hydrogen bonds, form a base-pair (bp).

∗ The general audience for whom this paper is intended, our fields of expertize, and the space available for this chapter,
affected both the depth and the breadth of our exposition. In particular, the list of research topics presented here is by
no means exhaustive, and it is only meant to give a sample of DNA computing research. Moreover, the space devoted to
various fields and topics was influenced by several factors and, as such, has no relation to the respective importance of
the field or the relative size of the body of research in that field.
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As an example, the DNA single strand 5′- AAAAACC - 3′ will bind to the DNA single strand
5′-GGTTTTT-3′ to form the 7 base-pair-long (7bp) double strand

5′ − AAAAACC− 3′

3′ − TTTTTGG− 5′
.

Formally, theWatson–Crick complement of a DNA single strandwwill be denoted byWK(w) or
←
w .

Using our convention on directionality of strands, note that WK(AAAAACC) = GGTTTTT.
Another nucleic acid that has been used for computations is RNA, [23].Ribonucleic acid orRNA is

a nucleic acid that is similar toDNA, but differs from it in threemain aspects: RNA is typically single-
stranded while DNA is usually double-stranded, RNA nucleotides contain the sugar ribose, while
DNA nucleotides contain the sugar deoxyribose, and in RNA the nucleotide Uracil, U, substitutes
for Thymine, which is present in DNA.
The genome consists of DNA sequences, some of which are genes that can be transcribed into

messenger RNA (mRNA), and then translated into proteins according to the genetic code that maps
each 3-letter RNA segment (called codon) into an amino acid. Several designated triplets, called start
(stop) codons, signal the initiation (termination) of a translation. A protein is a sequence over the
20-letter alphabet of amino acids.
There aremany possibleDNAbio-operations that can be used for computations, [2,38,64], such as:

hybridization byWatson–Crick complementarity, cut-and-paste operations achievable by enzymes,
the synthesis of desired DNA strands up to a certain length, making exponentially many copies of
a DNA strand, the separation of strands by length, the extraction of DNA strands that contain a
certain subsequence, and reading-out a DNA strand. These bio-operations, some briefly explained
later, have all been used to control DNA computations and DNA robotic operations.
DNA single strands with opposite orientation will join together to form a double helix in a

process called base-pairing, annealing, or hybridization. The reverse process—a double-stranded
helix coming apart to yield its two constituent single strands—is called melting. As the name
suggests, melting is achieved by raising the temperature, and annealing by lowering it.
One class of enzymes, called restriction endonucleases, each recognize a specific short sequence of

DNA, known as a restriction site. Any double-stranded DNA that contains the restriction site within
its sequence is cut by the enzyme at that location in a specific pattern. Depending on the enzyme,
the cutting operation leaves either two “blunt-ended” DNA double strands or, more often, two
DNA strands that are double-stranded but have single-stranded overhangs known as “sticky-ends.”
Another enzyme, called DNA ligase, can link together two partially double-stranded DNA strands
with complementary sticky-ends, by sealing their backbones with covalent bonds. The process is
called ligation.
The separation of DNA strands by length is possible by using a technique called gel electrophoresis.

The negatively charged DNA molecules are placed at the top of a wet gel, to which an electric field
is applied, drawing them to the bottom. Larger molecules travel more slowly through the gel. After
a period, the molecules spread out into distinct bands according to their size.
The extraction of DNA single strands that contain a specific subsequence v, from a heterogeneous

solution of DNA single strands, can be accomplished by affinity purification. After synthesizing
strands Watson–Crick complementary to v, and attaching them to magnetic beads, the heteroge-
neous solution is passed over the beads. Those strands containing v anneal to its Watson–Crick
complementary sequence and are retained. Strands not containing v pass through without being
retained.
The DNA polymerase enzymes perform several functions including the replication of DNA by a

process called Polymerase Chain Reaction, or PCR. The PCR replication reaction requires a guid-
ing DNA single strand called template, and an oligonucleotide called primer, that is annealed to
the template. The DNA polymerase enzyme then catalyzes DNA synthesis by successively adding
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nucleotides to one end of the primer. The primer is thus extended at its 3′ end, in the direction 5′ to
3′ only, until the desired strand is obtained that starts with the primer and is complementary to the
template. If two primers are used, the result is the exponential multiplication of the subsequence of
the template strand that is flanked by the two primers, in a process called amplification, schematically
explained in the following. For the purpose of this explanation, if x is a string of letters over the DNA
alphabet {A, C, G, T}, then x will denote its simple complement, for example,

AACCTTGG = TTGGAACC.

Let us assume now that one desires to amplify the subsequence between x and y from the DNA

double strand
5′ − αxβyδ − 3′

3′ − ᾱx̄β̄ȳδ̄ − 5′
, where α, x,β, y, δ are DNA segments. Then, one uses as primers

the strand x and the Watson–Crick complement of y. After heating the solution and thus melting
the double-stranded DNA into its two constituent strands, the solution is cooled and the Watson–
Crick complement of y anneals to the “top” strand, while x anneals to the “bottom” strand. The
polymerase enzyme extends the 3′ ends of both primers into the 5′ to 3′ direction, producing

partially double-stranded strands
5′ − αxβyδ − 3′

3′ − ᾱx̄β̄ȳ − 5′
and

5′ − xβyδ − 3′

3′ − ᾱx̄β̄ȳδ̄ − 5′
. In a similar fashion, the

next heating–cooling cycle will result in the production of the additional strands 5′ − xβy− 3′ and
3′ − x̄β̄ȳ− 5′. These strands areWatson–Crick complementary and will, from now on, be produced
in excess of the other strands, since both are replicated during each cycle. At the end, an order of 2n

copies of the desired subsequences flanked by x and y will be present in the solution, where n is the
number of the heating–cooling cycles.
The earlier and other bio-operations have all been harnessed in biocomputing. To encode infor-

mation using DNA, one can choose an encoding schememapping the original alphabet onto strings
over {A, C, G, T}, and proceed to synthesize the information-encoding strings asDNA single strands.
A biocomputation consists of a succession of bio-operations, [20], such as the ones described in
this section. The DNA strands representing the output of the biocomputation can then be read out
(using a sequencer) and decoded.

31.3 Adleman’s 3-SAT Experiment

The idea of using DNA molecules as the working elements of a computer goes back to 1994, [1],
whenAdleman solved a 7-node instance of theHamiltonian Path Problem by exclusively usingDNA
strands to encode information, and molecular biology techniques as algorithmic instructions. This
section describes another, more complex, DNA computing experiment that solves a large instance
of the 3-SAT problem, [15].
The 3-SAT problem is an NP-complete computational problem for which the fastest known

sequential algorithms require exponential time. The problem became a testbed for the performance
of DNA computers after Lipton, [54], demonstrated that it was well suited to take advantage of the
parallelism afforded bymolecular computation. In 2002, Adleman and his group solved a 20-variable
3-SAT problem, [15]. Unlike the initial proof-of-concept DNA computing experiment, this was the
first experiment that demonstrated that DNA computing devices can exceed the computational
power of an unaided human. Indeed, the answer to the problem was found after an exhaustive
search of more than 1 million (220) possible solution candidates.
The input to a 3-SAT problem is a Boolean formula in 3CNF, that is, in conjunctive normal form

where each conjunct has only at most three literals. This formula is called satisfiable if there exists
a truth value assignment to its variables that satisfies it, that is, that makes the whole formula true.
Thus, the output to the 3-SAT problem is “yes” if such a satisfying truth value assignment exists, and
“no” otherwise.
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The input formula of Adleman’s experiment was the 20-variable, 24-clause, 3CNF formula:
Φ = (x3 ∨ x16 ∨ x18) ∧ (x5 ∨ x12 ∨ x9) ∧ (x13 ∨ x2 ∨ x20) ∧ (x12 ∨ x9 ∨ x5) ∧ (x19 ∨ x4 ∨ x6) ∧ (x9 ∨

x12∨x5)∧(x1∨x4∨x11)∧(x13∨x2∨x19)∧(x5∨x17∨x9)∧(x15∨x9∨x17)∧(x5∨x9∨x12)∧(x6∨x11∨
x4)∧(x15∨x17∨x7)∧(x6∨x19∨x13)∧(x12∨x9∨x5)∧(x12∨x1∨x14)∧(x20∨x3∨x2)∧(x10∨x7∨x8)∧
(x5∨x9∨x12)∧(x18∨x20∨x3)∧(x10∨x18∨x16)∧(x1∨x11∨x14)∧(x8∨x7∨x15)∧(x8∨x16∨x10),

where xi denotes the negation of xi, 1 ≤ i ≤ 20. This formulaΦ was designed so as to have a unique
satisfying truth assignment. The unique solution is: x1 = F, x2 = T, x3 = F, x4 = F, x5 = F, x6 = F,
x7 = T, x8 = T, x9 = F, x10 = T, x11 = T, x12 = T, x13 = F, x14 = F, x15 = T, x16 = T, x17 = T,
x18 = F, x19 = F, x20 = F.
Adleman’s solution was based on the following nondeterministic algorithm.

Input: A Boolean formulaΦ in 3CNF.

Step 1: Generate the set of all possible truth value assignments.

Step 2: Remove the set of all truth value assignments that make the first clause false.

Step 3: Repeat Step 2 for all the clauses of the input formula.

Output: The remaining (if any) truth value assignments.

To implement this algorithm, one needs to first encode the input data as DNA strands. This was
achieved as follows. Every variable xk, k = 1, . . . , 20, was associated with two distinct 15-mer DNA
single strands called “value sequences.” One of them, denoted by XTk , represented true (T), while the

second, denoted by XFk , represented false (F).
The following are some examples of the particular 15-mer sequences—none of which contained

the nucleotide G—synthesized and used in the experiment:

XT1 = TTACACCAATCTCTT, XF1 = CTCCTACAATTCCTA,

XT20 = ACACAAATACACATC, XF20 = CAACCAAACATAAAC.

Eachof thepossible 220 truth assignmentswas representedby a 300-mer “library strand” consisting
of the ordered catenation of one 15-mer value sequence for each variable, that is, by a strand

α1α2 . . . α20, where αi ∈ {XTi ,X
F
i }, 1 ≤ i ≤ 20.

To obtain these “library strands,” the 40 individual 15-mer sequences (each present in multiple
copies in solution) were assembled using the mix-and-match combinatorial synthesis technique
of [23].
The biocomputation wetware essentially consisted of a glass “library module” filled with a gel

containing the library, as well as one glass “clause module” for each of the 24 clauses of the formula.
Each clausemodulewas filledwith gel containing probes (immobilizedDNAsingle strands) designed
to bind only library strands encoding truth assignments statisfying that clause.
The strands were moved between the modules with the aid of gel electrophoresis, that is, by

applying an electric current that resulted in the migration of the negatively charged DNA strands
through the gel.
The protocol started with the library passing through the first “clause module,” wherein library

strands containing the truth assignments satisfying the 1st clause were captured by the immobilized
probes, while library strands that did not satisfy the first clause continued into a buffer reservoir.
The captured strands were then released by raising the temperature, and used as input to the second
clausemodule, and so on. At the end, only the strand representing the truth assignment that satisfied
all the 24 clauses remained.
The output strand was PCR amplified with primer pairs corresponding to all four possible true–

false combinations of assignments for the first and last variable x1 and x20. None except the primer
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pair (XF1 ,WK(XF20)) showed any bands, thus indicating two truth values of the satisfying assignment,
namely x1 = F and x20 = F. The process was repeated for each of the variable pairs (x1, xk),
2 ≤ k ≤ 19, and, based on the lengths of the bands observed, value assignments were given to the
variables. These experimentally derived values corresponded to the unique satisfying assignment for
the formula Φ, thus concluding the experiment.
One of the remarkable features of thisDNAcomputing experimentwas that simple bio-operations

could carry on a complex computation such as the one needed for solving a relatively large instance
of 3-SAT.

31.4 Benenson Automata

Following Adleman’s, [1], proof-of-concept demonstration of DNA computing, several research
teams embarked on the quest for a DNA implementation of a Universal Turing Machine. In
the process, they demonstrated various molecular scale autonomous programmable computers
([10–12,56,74]) allowing both input and output information to be in molecular form. In this section
we illustrate one such programmable computer, [10], known as the “Benenson automaton.”

S0 S1

a

b

b

a

FIGURE 31.1 A finite

automaton with two states

S0 and S1 over the alphabet

set {a, b}, that accepts only

words with an even number

of letters b.

In [10] the authors construct a simple two-state automaton,
Figure 31.1, over a two-letter alphabet set, by using double-stranded
DNA molecules and restriction enzymes.
Any particular two-state automaton will have a subset of the eight

possible transition rules, and a subset of the two-state set as final states.
The automaton implemented byBenenson et al. takes strings of symbols
over the two-letter alphabet {a, b} as input, andacceptsonly those strings
that contain an even number of letters b (see Figure 31.1).
The main engine of the Benenson automaton is the FokI enzyme,

a member of an unusual class of restriction enzymes that recognize a
specific DNA sequence and cleave nonspecifically a short distance away
from that sequence. FokI binds the sequence

5′ − GGATG− 3′

3′ − CCTAC− 5′
,

and cleaves DNA (regardless of the sequence composition) 9 bp away on the “top” strand, and 13
bp away on the “bottom” strand, leaving thus four-letter-long sticky ends.
The input symbols, a, b, and the terminator t, are encoded respectively as the 6bp sequences:

a :
5′ − CTGGCT− 3′

3′ − GACCGA− 5′
b :

5′ − CGCAGC− 3′

3′ − GCGTCG − 5′
t :

5′ − TGTCGC− 3′

3′ − ACAGCG− 5′

An example of the encoding of an input string can be seen in the first line of Figure 31.3. The
input ab is encoded as a DNA double strand that contains a restriction site for FokI, followed closely
by the catenation of the encodings for the symbol string abt.
Every state/symbol pair is encoded as a 4-mer DNA strand in the following way. The state/symbol

pair S0a is encoded as 5
′ −GGCT− 3′ (the 4-mer suffix of the encoding for the symbol a), while S1a

is encoded as 5′ −CTGG− 3′ (the 4-mer prefix of the encoding for a). The encodings are chosen in
a similar way for the state/symbol pairs involving the input symbol b, and the terminator symbol t.
Thismethod permits the encoding of a symbol to be interpreted in twoways: If the 4-mer suffix of the
encoded symbol is detected, then the symbol is interpreted as being read in state S0; and if the 4-mer
prefix of the encoded symbol is detected, then the symbol is being interpreted as being read in state S1.
There are two output detectionmolecules. S0-D is a 161-merDNAdouble strandwith an overhang

3′−AGCG−5′, which “detects” the last state of the computation as being S0. S1-D is a 251-merDNA
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GGT

GGATGACGAC

T
4
: S

0 S
1

15GGT
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T
6
: S

1 S
1

a

a

30GGT
GGATGACG

T
8
: S

1 S
1

b

b
T

5
: S

1

FokI recognition site

CCTACATGCCGA CCTACTGCTGCCGA CCTACTGCGTCG CCTACTGCTGGTCG

CCTACTGCGCGTCCTACCGCGTCCTACTGCGACCCCTACTGACC

FIGURE 31.2 Transition molecules encoding the set of all possible transition rules of a two-state automaton. The

boxes represent DNA double-strands of length equal to the number inside the box. (Adapted from Benenson, Y. et al.,

Nature, 414, 430, 2001.)

double strand with an overhang 3′ − ACAG − 5′, which detects the last state of the computation
as being S1. The two output detection molecules have different lengths, so that they can be easily
differentiated by gel electrophoresis.
The eight possible transition molecules of a two-state Benenson automaton are shown in

Figure 31.2. Each has a four-letter overhang, for example, 3′ −CCGA−5′ for T1, that can selectively
bind toDNAmolecules encoding the current state/symbol pair, as detailed in the following example.
The automaton processes the encoding for the input string ab as shown in Figure 31.3. First, the

FokI enzyme recognizes its restriction site and cleaves the input encoding the symbols abt, thereby
exposing the 4-nucleotide sticky-end 5′ − GGCT− 3′ that encodes the state/symbol pair S0a.
The transition molecule T1 encoding the automaton rule S0a −→ S0 “detects” this state/symbol,

by binding exactly to the cleaved inputmolecule and forming a fully double-strandedDNAmolecule
with the aid of the enzyme ligase.
The transitionmoleculeT1, now incorporated in the currentmolecule, contains aFokI recognition

site. Moreover, the 3bp “spacer” sequence that follows the FokI restriction site in T1 ensures that the
next cleaving of FokI will expose a suffix of the encoding of the next input symbol b, which will be
correctly interpreted as S0b.

∗

The overhang of the current DNA molecule is now 5′ − CAGC − 3′, which is interpreted as S0b.
The sticky-end of this sequence fits the transition rule T4, encoding the automaton rule S0b −→ S1.
Thus, the combination of the current DNA strand with T4 and the enzyme ligase leads to another
fully double-stranded DNA strand.
A last use of FokI exposes the overhang 5′ − TGTC − 3′ of the current DNA molecule. This

is a prefix of the terminator, which is interpreted as S1t. The overhang is complementary to the
sticky-end 3′ − ACAG − 5′ of the detector molecule S1-D, corresponding to the last state of
the computation being S1. The state S1 is not final, and thus the outcome of the computation is
that the input ab is not accepted by this automaton.
Note that any two-state two-symbol automaton could be built using the aforementioned method.

The automaton could be made to perform a different task by choosing a different set of transition
molecules.
As an exciting application, Benenson et al. [12] demonstrated how the aforementioned method

can be used for medical diagnosis and treatment. As a proof of principle, Benenson et al. [12]
programmed an automaton to identify and analyze the mRNA of disease-related genes associated
with models of small-cell lung cancer and prostate cancer, and to produce a single-stranded DNA
molecule modeled after an anticancer drug.

∗ Note that, if the automaton would have had instead the transition rule T2, encoding S0a −→ S1, then the length of
the “spacer” in T2 would have been 5bp, placing the position of the cut 2bp more to the left. This would have exposed a
prefix of the encoding for b, which would have been correctly interpreted as S1b.
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3 0 0

FokI

3 0 0
G G C T C G C A G C T G T C G C

G C G T C G A C A G C G

T 1

ligase

3 0 0

3 0 0C A G C T G T C G C

A C A G C G

FokI

ligase

3 0 0

FokI

3 0 0

G G A T G

C C T A C
2 1

C T G G C T C G C A G C T G T C G C

G A C C G A G C G T C G A C A G C G
7

G G A T G T A C G G C T C G C A G C T G T C G C

C C T A C A T G C C G A G C G T C G A C A G C G
2 2

G G T

G G A T G A C G A C C A G C T G T C G C

C C T A C T G C T G G T C G A C A G C G
1 5

G G T

< S 0 , a >

< S 1 , t >

ligase

< S 0 , b >

T 4

3 0 02 5 1 T G T C G C

A C A G C G

< S 1 - D >

T G T C G C

C G

FIGURE 31.3 Example of the computation of a Benenson automaton corresponding to Figure 31.1, for the input ab.

The numbers in the boxes indicate the lengths of the corresponding double-stranded DNA sequences. (Adapted from

Benenson, Y. et al., Nature, 414, 430, 2001.)

The computational process of this automatonwas formalized in [86]. The authors of [86] study the
computational power of Benenson automata and show that they are capable of computing arbitrary
Boolean functions.

31.5 DNA Memory

This section discusses various aspects of DNA-encoded information. A brief description of sev-
eral models for a DNA memory is followed by a more detailed description of the Nested Primer
Molecular Memory (NPMM) (Section 31.5.1), and in vivo Organic DNA Memory (Section 31.5.2).
In addition, Section 31.5.3 provides a discussion on the various approaches to the optimal design
of information-encoding DNA sequences for DNA computing, including software simulations,
algorithmic methods, and theoretical studies.
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There are several reasons to consider DNAmemory as an alternative to all the currently available
implementations of memories. The first is the extraordinary information-encoding density that can
be achieved by using DNA strands. Indeed, the possibility of storing vast amounts of data in a
small space is probably one of the most alluring features of DNA computing. In [71], Reif reported
a calculation based on the facts that a mole contains 6.02 × 1023 DNA base monomers, and the
mean molecular weight of a monomer is approximately 350 g/mole. Thus, 1 g of DNA contains
2.1 × 1021 DNA bases. Since there are 4 DNA bases that can encode 2 bits, it follows that 1 gram
of DNA can store approximately 4.2 × 1021 bits. Thus, DNA has the potential of storing data on
the order of 1010 more compactly than conventional storage technologies. In addition, the robust-
ness of DNA data ensures the maintenance of the archived information over extensive periods of
time [4,18,85].
The idea of a content-addressable DNA memory, able to store binary words of fixed length, was

first proposed by Baum in [8]. In his model, each word in the memory would be a DNA single
strand constructed as follows. Two distinct DNA sequences would be assigned to each component,
the first encoding a “1,” and the other encoding a “0.” DNA molecules encoding a particular binary
word would then be obtained by catenating the appropriate DNA sequences corresponding to
its bits, in any order. This DNA memory would be associative, or content addressable. Given a
subset of the component values, one could retrieve any words consistent with these values from
the DNA memory as follows. For each component, one could synthesize the complement of the
corresponding subsequence of encodingDNA, and affix it to a solid support, for example, amagnetic
bead. This complement would then bond toDNAmemorymolecules that contain that subsequence,
that is, code for that component value. These molecules could then be extracted magnetically.
After iterative extractions based on each component, one would end up with DNA molecules
matching the constraints exactly. As calculated in [8], the storage that is in principle possible using
these techniques is astonishing, making it possible to imagine DNA memories vastly larger than
the brain.
Several other authors, [16,46,60,71,88], have proposed various DNA memory models. Almost all

of this research consists of preliminary experiments on a very small scale. Recently, Yamamoto et al.
proposed a DNA memory with over 10 million addresses [99]. Their proposed DNA memory is
addressable by using nested PCR, was named NPMM, and will be discussed in more detail in the
Section 31.5.1.

31.5.1 Nested Primer Molecular Memory

NPMM, [99], is a pool of DNA strands wherein each strand codes both data information and its
corresponding address information. The data information is a DNA sequence that uses a suitable
encoding to express the information as a sequence over the DNA alphabet {A, C, G, T}. The address
information consists of several components expressed as DNA sequences flanking the data. For
example, data could be stored as

[CLi,BLj,ALk, DATA,ARq,BRr ,CRs],

where i, j, k, q, r, s ∈ {0, . . . , 15}, and each of the components, for example, CL0, represents a 20-mer
DNA sequence. To retrieve the data, one uses nested PCR consisting of three steps. The first step
is to use PCR with the primer pair (CLi,WK(CRs)). As a result, one can extract from the memory
solution the set of DNAmolecules starting with CLi and ending in CRs. This is because PCR results
in a significant difference in concentration between the amplified molecules (starting with CLi
and ending with CRs), and nonamplified molecules. The latter can be disregarded for all practical
purposes. The second PCR is performed with primer pair (BLj,WK(BRr)). At this point we possess
DNA-encoded data that was flanked by CLiBLj and BRrCRs. The third step is PCR using primer pair
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(ALk,WK(ARq)). This will result in the target DNA-encoding data with “left address” CLiBLjALk
and “right address” CRqBRrARs. The molecules can then be sequenced and decoded to allow the
retrieval of the target DNA-encoded data.
The aforementioned NPMMmodel can realize both enormous address space and high specificity.

The hierarchical address structure enables a few DNA sequences to express very large address
spaces. One of the main disadvantages of NPMM is that during PCR mutations can occur. This
can be avoided by proper selection of DNA sequences, which will be discussed in detail in Section
31.5.3. The authors discuss, in [99], the limitation of scaling up the proposed DNA memory by
using a theoretical model based on combinatorial optimization with some experimental restrictions.
The results reveal that the size of the address space of this model of DNA memory is close to the
theoretical limit.

31.5.2 Organic DNA Memory

The development of a DNA memory technology utilizing living organisms has a much greater
potential than any of the existing counterparts to render long life expectancy of data, [97,98]. Since a
nakedDNAmolecule is easily destroyed in any open environment, a living organism can act as a host
that protects the information-encoding DNA sequence. In [97], the authors propose a candidate for
a living host for DNAmemory sequences, that tolerates the addition of artificial gene sequences and
survives extreme environmental conditions.
The experiment had several key stages, [97]. In the first stage, in the process of identifying can-

didates to carry the embedded DNA molecules, the authors considered several microorganisms,
and chose two well-understood bacteria, Escherichia coli, and Deinococcus radiodurans. In partic-
ular, Deinococcus can survive extreme conditions including cold, dehydration, vacuum, acid, and
radiation, and is therefore, known as a polyextremophile.
During the information encoding stage, a certain encoding scheme was chosen, that assigned

3-mer sequences to various symbols. For example, AAA encoded the digit “0,” AAC the digit “1,”
and AGG the letter “A” of the English alphabet. Each of the encoding DNA sequences contained
only three of the four DNA nucleotides. Using this encoding, any English text could be codified as a

Message

Sentinels

FIGURE 31.4 A recom-

binant plasmid with two

DNA fragments as sen-

tinels protecting the

DNA-encoded message in

between. (Reproduced from

Wong, P. et al., Commun.

ACM, 46, 95, 2003.)

DNA sequence, and the text chosen for this experiment was “And the
oceans are wide.”
In addition, several DNA sequences were chosen to act as “sentinels”

and tag the beginning and the end of the encoded messages, for later
identification and retrieval. These sequences were chosen by searching
the genomes of both E. coli and Deinococcus, and identifying a set of
fixed-size DNA sequences that do not exist in either genome, yet sat-
isfy all the genomic constraints and restrictions. Twenty five such DNA
sequences, 20 base-pairs each, were selected, in such a way so as not to
cause unnecessary mutation or damage to the bacteria. All sequences
contained multiple stop codons TAA, TGA, and TAG as subsequences.
Without their presence, the bacterium could misinterpret the memory
strands, transcribe them into mRNA, and then translate the mRNA into
artificial proteins that could destroy the integrity of the embedded mes-
sage, or even kill the bacterium.
A 46bp DNA sequence was then created, consisting of two different

20bp selected “sentinel” sequences, connected by a 6bp sequence that was
the recognition site of a particular enzyme. This double-stranded DNA
molecule was cloned into a recombinant plasmid (a circular double-
stranded DNA sequence)—see Figure 31.4.
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The embedded DNA was then inserted into cloning vectors (circular DNA molecules that can
self-replicate within a bacterial host). The resultant vectors were then transferred into E.coli by
high-voltage shocks, allowing the vector to multiply.
The vector and the encodedDNAwere then incorporated into the genome ofDeinococcus for per-

manent information storage and retrieval. Using prior knowledge of the sequences at both borders,
the message was retrieved by PCR, read-out, and decoded into the original English text it encoded.
The proposed organic DNAmemory has an enormous potential capacity for storing information,

especially considering that 1mL of liquid can contain up to 109 bacteria. Potential disadvantages are
randommutations, but these are unlikely given the well developed natural mechanisms that exist in
cells for detecting and correcting errors.

31.5.3 Design of DNA Sequences

In most DNA-based computations, there are three basic stages: (1) encoding the input data
using single- or double-stranded DNA molecules, (2) performing the biocomputation using bio-
operations, and finally (3) decoding the result. One of the main problems in DNA computing is
associated with step (1), and concerns the design of optimal information-encoding oligonucleotides
to ensure that mismatched pairing due to the Watson–Crick complementarity is minimized, and
that undesirable bonds between DNA strands are avoided.
Indeed, in laboratory experiments, the complementarity of the bases may pose potential problems

if some DNA strands form nonspecific hybridizations and partially anneal to strands that are not
their exact complements, or if they stick to themselves or to each other in unintendedways. There are
several approaches to addressing this so-called sequence design problem. In this chapter, we discuss
the software simulation approach, the algorithmic approach, and the theoretical approach to the
design of DNA strands optimal for DNA computing.

31.5.3.1 Software Simulation

Software simulation tools verify the computation protocol correctness before it is carried out in a
laboratory experiment. Several softwarepackages [24,25,32,33]written forDNAcomputingpurposes
are available. For example, the software Edna simulates biochemical processes and reactions that
can occur during a laboratory experiment.
Edna, [28], is a simulation tool that uses a cluster of PCs and simulates the processes that could

happen in test tubes. Edna can be used to determine if a particular choice of encoding strategy is
appropriate, to test a proposed protocol and estimate its performance and reliability, and even to
help assess the complexity of the protocols. Test tube operations are assigned a cost that takes into
account many of the reaction conditions. The measure of complexity used by Edna is the sum of
the costs added up over all operations in a protocol. Other features offered by the software allow the
prediction ofDNAmelting temperature (the temperature atwhich aDNAdouble strand “melts” into
its two constituent single strands), taking into account various reaction conditions. All molecular
interactions simulated by the software are local and reflect the randomness inherent in biomolecular
processes.

31.5.3.2 Algorithmic Method

In most DNA-based computations there is an assumption that a strand will bind only to its perfect
Watson–Crick complement. For example, the results of DNA computations are retrieved from the
test tubes by using strands that are complementary to the ones used for computation.
In practice, it is, however, possible that a DNA molecule will bind to another molecule, which

differs from its perfect complementary molecule by one or even several nucleotides. One way to
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avoid this is to ensure that two molecules in the solution differ in more than one location. This
property can be formalized in terms of the Hamming distance.
Given twowordsw1,w2 of equal length, theHammingdistanceH(w1,w2) is defined as the number

of locations in which the words w1 and w2 are distinct. For a set of words, the Hamming distance
constraint requires that any two words w1 and w2 in the set have H(w1,w2) ≥ d. If we are dealing
with DNA words, another constraint necessary to avoid mishybridizations is H(w1,WK(w2)) ≥ d,
whereWK(w) denotes theWatson–Crick complement ofw. Yet another consideration is that, when
retrieving the results from the solution, hybridization should occur simultaneously for all molecules
in the solution. This implies that the respective melting temperatures should be comparable for all
hybridization reactions that are taking place. This is the third main constraint that the set of words
under consideration needs to adhere to.
To address the problem of designing DNA code words according to these three constraints, an

algorithm based on a stochastic local search method was proposed in [89]. The melting temperature
constraint is simplified to the constraint requiring that, for each strand, the number of C and G
nucleotides amounts to 50% of its total nucleotide count. The algorithm produces a set of DNA
sequences of equal length that satisfy the Hamming distance and the temperature constraints. The
algorithm is based on the following:

Input: Number k of words needed to produce, and the word length n.

Step 1: Produce a random set of k words of length n.

Step 2: Modify the set so that the set satisfies the first constraint.

Step 3: Repeat Step 2 for all the given constraints.

Output: The set of words (if one can be found).

More specifically, for Step 2 twowordsw1 andw2 are chosen from the set that violate at least one of
the constraints. With a probability 1− θ, θ being the noise parameter, one of these words is altered
by randomly substituting one base in a way that maximally decreases the number of constraint
violations. The algorithm terminates either when there are no more constraint violations in the set
of words or when the number of loop iterations has exceeded some maximum threshold. Empirical
results prove this technique to be effective and the noise parameter θ is empirically determined to
be optimal as 0.2, regardless of the problem instance.

31.5.3.3 Theoretical Studies

In this section, we discuss the formal language theoretical approach to the problem of designing code
words, introduced in [35]. We begin by reviewing some basic notions and notations. An alphabet is
a finite, nonempty set of symbols. Let Σ be such an arbitrary alphabet. Then Σ∗ denotes the set of all
words over this alphabet, including the empty word λ. Σ+ is the set of all nonempty words over Σ.
Σi is the set of all words over Σ of length i. We also denote by Subk(L), the set of all subwords of
length k of words from the set L. For more details of formal language theory, theory of codes, and
combinatorics on words the reader is referred to [14,34,55,75,83,102].
Every biomolecular protocol involving DNA generates molecules whose sequences of nucleotides

form a language over the four-letter alphabet∆ = {A,G, C, T}. TheWatson–Crick complementarity
of the nucleotides defines a natural involution θ, A 7→ T and G 7→ C which is an antimorphism
on ∆∗. An involution θ is a mapping such that θ2 is the identity. An antimorphism θ is such that
θ(uv) = θ(v)θ(u) for all words u, v from ∆∗. For example, if u = AGACT, then the Watson–Crick
complement θ(u) is AGTCT.
Given a DNA language, that is, a language over the DNA alphabet ∆, undesirable Watson–

Crick bonds between its words can be avoided if the language satisfies certain properties. There
are two types of unwanted hybridizations: intramolecular and intermolecular. The intramolecular
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FIGURE 31.5 Intramolecu-

lar hybridization (hybridiza-

tion within the same

molecule). A DNA sequence

of the type uv
←
ux, where

←
u

denotes the Watson–Crick

complement of u, will form

a secondary structure called

a hairpin. Such hairpin

structures are avoided by

hairpin-free languages and by

θ-k-m-subword codes.

hybridization happens when two sequences, one being the reverse
complement of the other, appear within the same DNA strand (see
Figure 31.5). In this case the DNA strand forms a hairpin.
Suppose we want to avoid the type of hybridization shown in Figure

31.5. A language L is called (Jonoska et al., [36]) a θ-k-m-subword code
if for all words u ∈ Σk we have Σ∗uΣmθ(u)Σ∗ ∩ L = ∅. An analogous
definition of hairpin-free languages was given in [41]. In this definition,
Σ is an arbitrary alphabet and θ is any antimorphic involution. If Σ

is taken to be the DNA alphabet ∆, then this property is essentially
saying that the DNA sequences from the set L do not form the hairpin
structures illustrated in Figure 31.5.
DNA strand sets that avoid all types of unwanted intermolecular

bindings (SeeFigure 31.6)were introduced in [36], and calledθ-k-codes.
A language L is said to be a θ-k-code if θ(x) 6= y for all x, y ∈ Subk(L).
The relationship θ(x) = y indicates that the molecules corresponding

to x and y can form chemical bonds between them as shown in Figure 31.6. For a suitable k, a
θ-k-code avoids all kinds of unwanted intermolecular hybridizations.
The θ-k-code property ismeant to ensure that DNA strands do not formunwanted hybridizations

during DNA computations. Sets theoretically designed to have this property have been successfully
tested in practical wet-lab experiments [36]. In [44], the concept of θ-k-code has been extended to
the Hamming bond-free property: H(θ(x), y) > d for any subwords x, y ∈ Subk(L), where d is an
empirically chosen positive integer parameter.
Suppose we use codes that have the language properties we have described, whatmay happen dur-

ing the course of computation is that the properties initially present deteriorate over time. This leads
to another study, which investigates how bio-operations such as cutting, pasting, splicing, contextual
insertion, and deletion affect the various bond-free properties of DNA languages. Invariance under
these bio-operations has been studied in [36,37,40]. Bounds on the sizes of some other codes with
desirable properties that can be constructed are explored by Marathe et al. [57].
The approach to DNA-encoded information and its properties described in this section has been

meaningful to both DNA computing experimental research, and to DNA computing theoretical
research by establishing a mathematical framework for describing and reasoning about DNA-
encoded information. In addition, the notions defined and investigated in this context proved to
be fruitful from the purely computer science point of view. Indeed, it turns out that some of these
notions generalize classical concepts in coding theory and combinatorics of words such as primitive,

u  = k

u

u

u

u

u

u

FIGURE 31.6 Intermolecular hybridizations (hybridizations between different molecules): If one DNA molecule

contains a subword u of length k, and the other one contains the subword ← u, then the molecules will bind to each

other, as shown in this figure. Such hybridizations are avoided by θ-k-subword codes.
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commutative, conjugate, and palindromic words, as well as prefix, suffix, infix, and comma-free
codes (see, e.g., [19,35,40,42,43]).

31.6 Computation in Living Cells

An example of the attempts to understand nature as computation is the research on computation
in and by living cells. This is also sometimes called cellular computing, or in vivo computing, and
one particular area of study in this field concerns the computational capabilities of gene assembly in
unicellular organisms called ciliates [22,50].
Ciliates, unicellular protozoa named for their wisp-like cover of cilia, possess two types of nuclei:

an active macronucleus containing the functional genes, and a functionally inert micronucleus that
contributes only to genetic information exchange. In the process of conjugation, after two ciliates
exchange genetic information and form new micronuclei, they have to assemble in real-time new
macronuclei necessary for their survival. This is accomplished by a process that involves reordering
some fragments of DNA from the micronuclear DNA (permutations and some inversions) and
deleting other fragments. The process of obtaining the macronuclear DNA from the micronuclear
DNA, by removing the noncoding sequences and permuting the coding fragments to obtain the cor-
rect order, is called gene rearrangement [66] (see Figure 31.7). The function of the various noncoding
eliminated sequences is unknown and they represent a large portion (up to 98%) of the micronu-
clear sequences. As an example, the micronuclear Actin I gene in Oxytricha nova is composed of 9
coding segments present in the permuted order 3-4-6-5-7-9-2-1-8, and separated by 8 noncoding
sequences. Instructions for the gene rearrangement (also called gene unscrambling) are apparently
carried in the micronuclear DNA itself: pointer sequences present at the junction between coding
and noncoding sequences, as well as certain RNA “templates,” permit reassembly of the functional
macronuclear gene.

1

1
3

5 7
6 2

4

2 3 4 5 6 7

In the macronucleus, gene-sized
chromosomes assemble from
their scrambled building blocks;
telomere repeats (boxes) mark
and protect the surviving ends.

In the macronucleus, coding
regions of DNA are dispersed
over the long chromosome.

FIGURE 31.7 Overview of gene rearrangement in ciliates. Dispersed micronuclear coding fragments 1–7 (bottom)

reassemble during macronuclear development to form the functional gene copy (top). (From Landweber, L. and Kari,

L., The evolution of cellular computing: Nature’s solution to a computational problem, Proceedings of the DNA 4,

University of Pennsylvania, Philadelphia, PA (Reproduced from L. Kari, H. Rubin, and D. Wood, Eds.); Biosystems,

52, 3, 1999.)
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The process of gene assembly is interesting from both the biological and the computational point
of view. From the computational point of view, this study led tomany novel and challenging research
themes, [22]. Among others, it was proved that various models of gene assembly have full Turing
machine capabilities, [50]. From the biological point of view, the joint effort of computer scientists
and biologists led to a plausible hypothesis (supported already by some experimental data) about
the “bioware” that implements the process of gene assembly, which is based on the new concept of
template-guided recombination, [3,63,67].
Other approaches to cellular computing include developing of an in vivo programmable and

autonomous finite-state automaton within E. coli, [59], and designing and constructing in vivo
cellular logic gates and genetic circuits that harness the cell’s existing biochemical processes
[49,92,93].

31.7 DNA Self-Assembly

One of the most important achievements of DNA computing has been its contribution to the
extensive body of research in nanosciences, by providing computational insights into a number
of fundamental issues. Perhaps, the most prominent is its contribution to the understanding of
self-assembly, which is among the key concepts in nanosciences (see [70] for an overview of self-
assembly written for computer scientists). Self-assembly originates in the formal two-dimensional
model of tiling defined and studied by Wang, [90]. Tiles are squares with “coloured edges” that,
when placed on the plane, form a valid tiling only if the colours at their abutting edges are equal.
Tiling systems can be used to simulate the computation of a universal Turing Machine (see, e.g.,
[13,90]). Winfree et al. [94,95], were the first to implement the concepts of computational tiling by
using self-assembling “DNA tiles.” This section describes several models of self-assembly, as well as
applications of self-assembly to computation, (Section 31.7.1), to the creation of static DNA shapes
andpatterns (Section 31.7.2), aswell as to engineering dynamicDNAnanomachines (Section 31.7.3).

31.7.1 DNA Self-Assembly for Computation

Molecular self-assembly is an automatic process in which molecules assemble into covalently
bonded, well-defined stable structures without guidance or management from an outside source.

FIGURE 31.8 DNA Holiday

junction. Four DNA single

strands can be designed so as

to form a branched structure in

which each single strand partici-

pates in two consecutive double-

stranded “branches.”

There are two types of self-assembly, namely, intramolecular self-
assembly and intermolecular self-assembly. Most often the term
molecular self-assembly refers to intermolecular self-assembly, while
the intramolecular analog is more commonly called folding.
One of the important features of DNA used in self-assembly is that

DNA has many rigid, well-characterized forms that are not a linear
double helix. For example, one can build DNA structures called Hol-
iday junctions, [77], wherein four DNA single strands self-assemble
and create a branched structure, as seen in Figure 31.8. This can be
accomplished by designing each of the four DNA single strands to
be partially complementary to one of the others, so that each strand
participates in two consecutive double-stranded “branches.”
This typeof complex self-assembledDNAstructureshavebeenused

by Winfree et al. who introduced a two-dimensional self-assembly
model for DNA computation, [95]. In this model, using techniques
similar to the ones described earlier (demonstrated, e.g., in [27]),
rectangular DNA structures are built, with four sticky single-stranded
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ends at their corners. These DNA structures behave as “tiles” and can be designed to perform two-
dimensional assembly as follows. Depending on their composition, the sticky ends of a tile (which
are single-stranded DNA strands) will attach only to Watson–Crick complementary correspond-
ing ends from other tiles. This results in spontaneous self-assemblies of the tiles into essentially
planar conformations that can be designed so as to perform any deterministic or nondeterministic
computation.
Yokomori et al., [101], introduced another self-assembly model that is Turing-universal. Other

computations that have been achieved by the self-assembly of complex DNA nanostructures include
bit-wise cumulative XOR, [56], and binary counters [5]. As another example, Seelig et al. [76]
reported the design and experimental implementation of DNA-based digital logic circuits. The
authors demonstrate AND, OR, and NOT gates, signal restoration, amplification, feedback, and
cascading.
Regarding intramolecular self-assembly, Hagiya et al. [31] and Sakamoto et al. [74], proposed a

new method of DNA computing that involves a self-acting DNA molecule containing, on the same
strand, the input, program, and working memory. The computation, also called Whiplash PCR,
proceeds as follows (see Figure 31.9). The single DNA strand contains at its 5′ end state transitions

of the type A −→ B, each encoded as a DNA rule block “
←

B −
←
A −stopper sequence.” The 3′ end of

the DNA sequence contains, at any given time, the encoding of the “current state,” sayA. In Step (1),
cooling the solution will lead the 3′ end of the DNA strand, A, to attach to its complement in the

corresponding rule block, namely to
←
A . In Step (2), PCR is used to extend the now-attached end A

by the encoding of the new state B, and the extension process is stopped by the stopper sequence.
Then, in Step (3), by raising the temperature, the new current state B detaches and becomes loose,
and the next state transition cycle can begin.
The main motivation for using this model is that self-acting molecules can compute in parallel,

in a single-tube reaction, allowing for a multiple program, multiple input architecture. Hagiya et al.,
[31], showed how to theoretically learn µ-formulas using this model. Subsequently, Winfree [96]
showed how to solve several NP-complete problems in O(1) biosteps using whiplash PCR.

Rule block 15΄

B

(1)

(3)

(2)

B B

A

A

A

CStopper StopperB

B A AC B B

A

A

A

Rule block 2 3΄

FIGURE 31.9 Whiplash PCR (
←
A denotes the Watson–Crick complement of A). The 5′ end of the DNA strand

contains rule blocks “
←

B −
←
A − stopper sequence” coding for state transitions of the typeA→ B. The 3′ end contains

the encoding of the current state A. In Step (1), cooling the solution leads the 3′ end A to attach to the corresponding

part of the rule block. In Step (2), PCR extends the now-attached end encoding the state A, by the new state B,

stopping at the stopper sequence. Raising the temperature results, in Step (3), in the loose end encoding the new state

B becoming detached and ready for the next state transition cycle.
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31.7.2 DNA Nanoscale Shapes

DNA nanotechnology (see [78] for a comprehensive survey), uses the unique molecular recognition
properties of DNA to create intricate structures such as self-assembling branched DNA complexes
with useful properties.
DNA is a building block ideally suited for nanostructures, as it combines self-assembly properties

with programmability. In nanotechnology, DNA is used as a structural material rather than as
a carrier of biological information. Using DNA, impressive nanostructures have been created,
including two- and three-dimensional structures. Examples include DNA nanostructures such as
Sierpinski triangles [73], and cubes [17,78].
Anotherdesign themewas introduced in [81].The authors report that a single strandofDNA(1669

nucleotides long)was folded into ahighly rigidnanoscale octahedron structure, of adiameter of about
22 nanometers. The long strand of DNAwas designed so as to have a number of self-complementary
regions, which would induce the strand to fold back on itself to form a sturdy octahedron. Folding
the DNA into the octahedral structure simply required the heating and the cooling of the solution
containing the DNA, magnesium ions, and five 40-mer accessory DNA sequences. Moreover, this
design permitted the assembly of the first clonable DNA three-dimensional nanostructure.
Rothemund, [72], presented a simple model that uses several short strands of DNA to direct the

folding of a long single strand of DNA into desired shapes. The author demonstrates the generality
of the method, called “scaffolded DNA origami,” that permits the fabrication (out of DNA) of any
two-dimensional shape roughly 100 nm in diameter. The techniques used are similar to the ones
used in the design of the Holiday junction (Section 31.7), in that the constituent DNA strands form
complex structures by their design, which makes it possible for some single strands to participate in
two DNA helices—they wind along one helix, then switch to another.
Thedesignprocessof aDNAorigami involves several steps.Thefirst step is tobuild anapproximate

geometric model of the desired shape. The shape is approximated by cylinders that are models of the
DNA double-helices that will ultimately be used for the construction. The second step is to fill the
shape by folding a single long “scaffold strand” back and forth in a raster pattern such that, at each
moment, the scaffold strand represents either the “main” strand or the “complement” strand of a
double helix. (The process is analogous to drawing out a shape using a single line, andwithout taking
the pencil off the paper.) Once the geometric model and the folding path have been designed, the
third step is to use a computer program to generate a set of “staple strands” that provide Watson–
Crick complements for the scaffold. The staple strands are designed to bind to portions of the scaffold
strand, holding it thus together into the desired shape. The staple strands are then fine-tuned to
minimize strain in the construction and optimize the binding specificity and binding energy.
To test this method, Rothemund [72] used as a scaffold circular genomic DNA (7249 nucleotide

long) from the virusM13mp18. Approximately 250 short staple strands were synthesized andmixed
with the scaffold, in 100-fold excess to it. The strands annealed in less than 2 h and AFM (Atomic
ForceMicroscopy) imaging showed that indeed the desired shape was realized. The generality of the
method was proved by assembling six different shapes such as squares, triangles, five-pointed stars,
and smiley faces (Figure 31.10).
This method not only provides access to structures that approximate the outline of any desired

shape, but also enables the creation of structures with arbitrary-shaped holes or surface patterns. In
addition, it seems likely that scaffolded DNA origami can be adapted to design three-dimensional
structures.

31.7.3 DNA Nanomachines

In addition to static DNA nanoscale shapes and patterns, an impressive array of ingenious DNA
nanomachines (see [6,53] for comprehensive reviews), were designed with potential uses to

© 2010 by Taylor and Francis Group, LLC



31-18 Special Topics and Techniques

(a) (b) (c)

FIGURE 31.10 (a) A folding path that creates a “DNA smiley.” An even number of double helices are filled into the

desired shape. (b), (c) A long single-stranded DNA self-assembles into the desired shape (Atomic Force Microscopy

images). (Reproduced from Rothemund, P., Nature, 440, 297, 2006.)

nanofabrication, engineering, and computation. DNA nanomachines, that is, DNA-based nano-
devices that convert static DNA structures into machines that can move or change conformation,
have been developed rapidly since one of the earliest examples was reported in 1998, [100]. They
include molecular switches that can be driven between two conformations [52], DNA “tweezers”
[103], DNA “walkers” that can be moved along a track [80,82] and autonomous molecular motors
[7,30,69].
We illustrate some of the construction principles used with the construction of a device referred

to as “molecular tweezers,” [103]. The DNA tweezers consist of two partially double-stranded DNA
arms connected by a short single DNA strand acting as a flexible hinge (Figure 31.11). The resulting
structure is similar in form to a pair of open tweezers. A so-called set strand is designed in such a
way as to be complementary to both single stranded “tails” at the end of the arms. The addition of
this set strand to the mixture will result in its annealing to both tails of the arms, bringing thus the
arms of the tweezers together in a “closed” configuration. A short region of the set strand remains
single stranded even after it hybridizes to the arms. This region is used as a toehold that allows a
new “reset strand” to strip the set strand from the arms, by hybridizing with the set strand itself. The
tweezers are thus returned to the “open” configuration. A number of variations on the tweezers have
also been reported [21,26,58,84].
Considerable efforts have been expended on realizing “walking devices.” Several molecular

machines, which can walk along a track have been proposed [65,79,80,82,87]. Shin and Pierce [82],

Set

Closed

Open

Waste

Reset

Branch
migration

FIGURE 31.11 A DNA nanomachine, “DNA tweezers,” driven by repeated sequential additions of “set” and “reset”

strands. In the open state, the DNA tweezer consists of two double helical arms (with short single-stranded tails),

connected by a single stranded hinge. Hybridization of the tails with the set strand closes the arms. The set strand

can be removed via branch migration, by which the fully complementary “reset strand” strips the set strand from the

tweezer tails, returning it to the open state. (Reproduced from Liedl, T. et al., Nanotoday, 2, 36, 2007.)
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introduced a DNA device with two distinguishable feet that “walks” directionally on a linear DNA
track with four distinct single strands periodically protruding from it and acting as anchors. The
walker is double-stranded and has two single-stranded extensions acting as “legs.” Specific attach-
ment strands bind the legs to the single-stranded extensions anchors periodically placed along the
double-stranded track. Each step requires the sequential addition of two strands: the first lifts the
back foot from the track, by strand displacement—aprocess bywhich an invading singleDNA strand
can “displace” one of the constituent strands of a double-strand, by replacing it with itself, provided
the newly formed structure is more stable. The second strand places the released foot ahead of the
stationary foot. Brownian motion provides movement, and the order of adding the “instruction”
strands ensures directionality. A similar walking device, based on the movement pattern of inch-
worms, was developed by Sherman and Seeman, [80]: here the front foot steps forward and the back
foot catches up.
The walkers described earlier need “fuel DNA,” and cannot walk autonomously. Recently, [79]

suggested a three-leg molecular walking machine that can walk autonomously in two or three
dimensions on a designed route. It uses an enzyme as a source of power, and a track of DNA
equipped with many single-stranded DNA anchors arranged in a certain pattern.
We end this section by mentioning research on DNA nanodevices in conjunction with the cell’s

genetic mechanisms. Cellular organisms exhibit complex biochemical interaction networks com-
prising genes, RNA and proteins. These include gene activation and inhibition, gene transcription
into RNA, and the translation of RNA into proteins. By adapting parts of these genetic mechanisms,
one can engineer novel molecular machinery in vitro and potentially in vivo, [53]. Several attempts
have been made to use genetic mechanisms to control DNA-based nanodevices, [47,48,61,62]. For
example, pioneering work by Noireaux, Bar-Ziv and Libchaber, [61,62], demonstrates the principles
of “cell-free genetic circuit assembly,”wherein the termcell-free refers to the fact that the experiments
were performed in vitro, not in vivo. Overall, the successful combination of DNA-based nanodevices
with genetic machinery points to promising possible applications to biotechnology, bioengineering,
and medicine.

31.8 Conclusion

The excitement that the first DNA computing experiment created in 1994 was primarily due to the
fact that computing with DNA offered a completely new way of both looking at and performing
computations: by cutting and pasting DNA strands using enzymes, by using the Watson–Crick
complementarity of DNA strands, by selecting DNA strands containing a certain pattern, and so
on. This novel way of viewing computation has the potential to change the very meaning of the
word “compute,” and DNA computing has already made significant contributions to the field of
computer science. At the same time, research into the computational abilities of cellular organisms
has the potential to uncover the laws governing biological information and to enable us to harness
the computational power of cells.
This chapter was intended to give the reader a snapshot ofDNAcomputing research by addressing

both theoretical and experimental aspects, both “classical” and very recent trends, the impact of
molecular computation on the theory and technology of computation, as well as on understanding
of the basic mechanisms of bioprocesses.
DNA computing is a rapidly developing field and the recent years already saw some interesting

new developments. Experimental advances include self-assembly of cylinders and Möbius strips
[29], and new designs for DNA nanomachines, fueled by light, [51]. Progress in the theory of DNA
computing include studies of pseudoknot-free DNA/RNA words, [45], of the time-optimal self-
assembly of three-dimensional shapes [9], and the proposal of a simple scalable DNA-gate motif for
the purpose of synthesizing large-scale circuits [68].
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It is envisaged that research into in vitro and in vivoDNAcomputing constitutes just a preliminary
step that may ultimately lead to molecular computing becoming a viable complementary tool for
computation, as well as providingmore insight into the computational nature of bioprocesses taking
place in living organisms.
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