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“Come forth into the light of things
Let nature be your teacher.” [47]

1 Biological mathematics: the tables turned

The field usually referred to as mathematical biology is a highly interdisciplinary
area that lies at the intersection of mathematics and biology. Classical illustra-
tions include the development of stochastic processes and statistical methods
to solve problems in genetics and epidemiology. As the name used to describe
work in this field indicates, with “biology” the noun, and “mathematical” the
modifying adjective, the relationship between mathematics and biology has so
far been one–way. Typically, mathematical results have emerged from or have
been used to solve biological problems (see [24] for a comprehensive survey). In
contrast, Leonard Adleman, [1], succeeded in solving an instance of the directed
Hamiltonian path problem solely by manipulating DNA strings. This marks
the first instance of the connection being reversed: a mathematical problem is
the end toward which the tools of biology are used. To be semantically cor-
rect, instead of categorizing the research in DNA computing as belonging to
mathematical biology, we should be employing the mirror–image term biological
mathematics for the field born in November 1994.

Despite the complexity of the technology involved, the idea behind biological
mathematics is the simple observation that the following two processes, one
biological and one mathematical, are analogous:

(a) the very complex structure of a living being is the result of applying
simple operations (copying, splicing, etc.) to initial information encoded in a
DNA sequence,

(b) the result f(w) of applying a computable function to an argument w

can be obtained by applying a combination of basic simple functions to w (see
Section 4 or [42] for details).

If noticing this analogy were the only ingredient necessary to cook a com-
puting DNA soup, we would have been playing computer games on our DNA
laptops a long time ago! It took in fact the ripening of several factors and a
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renaissance mind like Adleman’s, a mathematician knowledgeable in biology, to
bring together these apparently independent phenomena. Adleman realized that
not only are the two processes similar but, thanks to the advances in molecular
biology technology, one can use the biological to simulate the mathematical.
More precisely, DNA strings can be used to encode information while enzymes
can be employed to simulate simple computations, in a way described below.

DNA (deoxyribonucleic acid) is found in every living creature as the storage
medium for genetic information. It is composed of units called nucleotides,
distinguished by the chemical group, or base, attached to them. The four bases
are adenine, guanine, cytosine and thymine, abbreviated as A, G, C, and T .
Single nucleotides are linked together end–to–end to form DNA strands. The
DNA sequence has a polarity: a sequence of DNA is distinct from its reverse.
Taken as pairs, the nucleotides A and T and the nucleotides C and G are said to
be complementary. Two complementary single–stranded DNA sequences with
opposite polarity will join together to form a double helix in a process called
annealing. The reverse process – a double helix coming apart to yield its two
constituent single strands – is called melting.

A single strand of DNA can be likened to a string consisting of a combination
of four different symbols, A, G, C, T . Mathematically, this means we have at
our disposal a 4 letter alphabet Σ = {A, G, C, T} to encode information, which
is more than enough, considering that an electronic computer needs only two
digits, 0 and 1, for the same purpose.

The simple operations that can be performed on DNA sequences are ac-
complished by a number of commercially available enzymes that execute some
basic tasks. One class of enzymes, called restriction endonucleases, will recog-
nize a specific short sequence in a strand and then “cut” the strand at that
location. Another enzyme, called the DNA ligase, will hook together, or “lig-
ate”, the sticky end of a freshly cut DNA strand to another strand. There are
many other enzymes that could potentially be useful, but for our models of
computation these are sufficient.

The practical possibilities of encoding information in a DNA sequence and of
performing simple bio–operations were used in [1] to solve a 7 node instance of
the Directed Hamiltonian Path Problem. A directed graph G with designated
vertices vin and vout is said to have a Hamiltonian path if and only if there
exists a sequence of compatible “one–way” edges e1, e2, . . . , ez (that is, a path)
that begins at vin, ends at vout and enters every other vertex exactly once.

The following (nondeterministic) algorithm solves the problem:
Step 1. Generate random paths through the graph.

Step 2. Keep only those paths that begin with vin and end with vend.

Step 3. If the graph has n vertices, then keep only those paths that enter exactly

n vertices.

Step 4. Keep only those paths that enter all of the vertices of the graph at least

once.

Step 5. If any paths remain, say “YES”; otherwise say “NO”.
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To implement Step 1, each vertex of the graph was encoded into a random
20–nucleotide strand (20–letter sequence) of DNA. Then, for each (oriented)
edge of the graph, a DNA sequence was created consisting of the second half of
the sequence encoding the source vertex and the first half of the sequence en-
coding the target vertex. By using complements of the vertices as splints, DNA
sequences corresponding to compatible edges were ligated, that is, linked to-
gether. Hence, the ligation reaction resulted in the formation of DNA molecules
encoding random paths through the graph.

To implement Step 2, the product of Step 1 was amplified by polymerase
chain reaction (PCR). Thus, only those molecules encoding paths that begin
with vin and end with vend were amplified.

For implementing Step 3, a technique called gel–electrophoresis was used,
that makes possible the separation of DNA strands by length. (The molecules
are placed at the top of a wet gel, to which an electric field is applied, drawing
them to the bottom. Larger molecules travel more slowly through the gel. After
a period, the molecules spread out into distinct bands according to size.)

Step 4 was accomplished by iteratively using a process called affinity purifi-
cation. This process permits single strands containing a given subsequence v

(encoding a vertex of the graph) to be filtered out from a heterogeneous pool of
other strands. (After synthesizing strands complementary to v and attaching
them to magnetic beads, the heterogeneous solution is passed over the beads.
Those strands containing v anneal to the complementary sequence and are re-
tained. Strands not containing v pass through without being retained.)

To implement Step 5, the presence of a molecule encoding a Hamiltonian
path was checked. (This was done by amplifying the result of Step 4 by poly-
merase chain reaction and then determining the DNA sequence of the amplified
molecules).

A remarkable fact about Adleman’s result is that not only does it give a
solution to a mathematical problem, but that the problem solved is a hard
computational problem in the sense explained below (see [20], [17]).

Problems can be ranked in difficulty according to how long the best algorithm
to solve the problem will take to execute on a single computer. Algorithms whose
running time is bounded by a polynomial (respectively exponential) function,
in terms of the size of the input describing the problem, are in the “polynomial
time” class P (respectively the “exponential time” class EXP). A problem is
called intractable if it is so hard that no polynomial time algorithm can possibly
solve it.

A special class of problems, apparently intractable, including P and included
in EXP is the “non–deterministic polynomial time” class, or NP. The following
inclusions between classes of problems hold:

P ⊆ NP ⊆ EXP ⊆ Universal.

NP contains the problems for which no polynomial time algorithm solving them
is known, but that can be solved in polynomial time by using a non–deterministic
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computer (a computer that has the ability to pursue an unbounded number
of independent computational searches in parallel). The directed Hamiltonian
path problem is a special kind of problem in NP known as “NP–complete”. An
NP–complete problem has the property that every other problem in NP can be
reduced to it in polynomial time. Thus, in a sense, NP–complete problems are
the “hardest” problems in NP.

The question of whether or not the NP–complete problems are intractable,
mathematically formulated as “Does P equal NP?”, is now considered to be
one of the foremost open problems of contemporary mathematics and computer
science. Because the directed Hamiltonian path problem has been shown to
be NP–complete, it seems likely that no efficient (that is, polynomial time)
algorithm exists for solving it with an electronic computer.

Following [1], in [25] a potential DNA experiment was described for finding a
solution to another NP–complete problem, the Satisfiability Problem. The Sat-
isfiability Problem consists of a Boolean expression, the question being whether
or not there is an assignment of truth values – true or false – to its variables,
that makes the value of the whole expression true. Later on, the method from
[25] was used in [28], [27] and [26], to show how other NP–complete problems
can be solved.

In [7], a “molecular program” was given for breaking the U.S. government’s
Data Encryption Standard (DES). DES encrypts 64 bit messages and uses a
56–bit key. Breaking DES means that given one (plain–text, cipher–text) pair,
we can find a key which maps the plain–text to the cipher–text. A conventional
attack on DES would need to perform an exhaustive search through all of the
256 DES keys, which, at a rate of 100,000 operations per second, would take
10,000 years. In contrast, it was estimated that DES could be broken by using
molecular computation in about 4 months of laboratory work.

The problems mentioned above show that molecular computation has the
potential to outperform existing computers. One of the reasons is that the op-
erations molecular biology currently provides can be used to organize massively
parallel searches. It is estimated that DNA computing could yield tremendous
advantages from the point of view of speed, energy efficiency and economic infor-
mation storing. For example, in Adleman’s model, [2], the number of operations
per second could be up to approximately 1.2 × 1018. This is approximately
1,200,000 times faster than the fastest supercomputer. While existing super-
computers execute 109 operations per Joule, the energy efficiency of a DNA
computer could be 2 × 1019 operations per Joule, that is, a DNA computer
could be about 1010 times more energy efficient (see [1]). Finally, according
to [1], storing information in molecules of DNA could allow for an information
density of approximately 1 bit per cubic nanometer, while existing storage me-
dia store information at a density of approximately 1 bit per 1012 nm3. As
estimated in [3], a single DNA memory could hold more words than all the
computer memories ever made.
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2 Can DNA compute everything?

The potential advantages of DNA computing versus electronic computing are
clear in the case of problems like the Directed Hamiltonian Path Problem, the
Satisfiability Problem, and breaking DES. On the other hand, these are only
particular problems solved by means of molecular biology. They are one–time
experiments to derive a combinatorial solution to a particular sort of problem.
This immediately leads to two fundamental questions, posed in Adleman’s ar-
ticle and in [20] and [28]:

(1) What kind of problems can be solved by DNA computing?
(2) Is it possible, at least in principle, to design a programmable DNA com-

puter?
More precisely, one can reformulate the problems above as:

(1) Is the DNA model of computation computationally complete in the sense
that the action of any computable function (or, equivalently, the computation
of any Turing machine) can be carried out by DNA manipulation?

(2) Does there exist a universal DNA system, i.e., a system that, given the
encoding of a computable function as an input, can simulate the action of that
function for any argument? (Here, the notion of function corresponds to the
notion of a program in which an argument w is the input of the program and
the value f(w) is the output of the program. The existence of a universal DNA
system amounts thus to the existence of a DNA computer capable of running
programs.)

Opinions differ as to whether the answer to these questions has practical
relevance. One can argue as in [8] that from a practical point of view it maybe
not be that important to simulate a Turing machine by a DNA computing
device. Indeed, one should not aim to fit the DNA model into the Procrustean
bed of classical models of computation, but try to completely rethink the notion
of computation. On the other hand, finding out whether the class of DNA
algorithms is computationally complete has many important implications. If the
answer to it were unknown, then the practical efforts for solving a particular
problem might be proven futile at any time: a Gödel minded person could
suddenly announce that it belongs to a class of problems that are impossible
to solve by DNA manipulation. The same holds for the theoretical proof of the
existence of a DNA computer. As long as it is not proved that such a thing
theoretically exists, the danger that the practical efforts will be in vane is always
lurking in the shadow.

One more indication of the relevance of the questions concerning computa-
tional completeness and universality of DNA–based devices is that they have
been addressed for most models of DNA computation that have so far been
proposed.

The existing models of DNA computation are based on various combinations
of a few primitive biological operations:
– Synthesis of a desired polynomial–length strand ([1], [2], [6], [5]);
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– Separation of the strands by length ([1], [2], [8], [5], [6]);
– Merging: pour two test tubes into one to do union ([1], [2], [28]);
– Extraction: extract those strands containing a given pattern as a substring
([1], [2], [28], [8], [6]);
– Melting/Annealing: break apart/bond together two single DNA strands with
complementary sequences ([8], [40], [46]);
– Amplifying: make copies of DNA strands by using the Polymerase Chain
Reaction ([1], [2], [28], [8], [5], [6], [40]);
– Cutting: cut DNA strands by using restriction enzymes ([8], [5], [6], [21], [37],
[40]);
– Ligation: paste DNA strands with complementary sticky ends by using ligases
([5], [6], [46], [21], [37], [40]);
– Detection: given a tube, say “yes” if it contains at least one DNA strand, and
“no” otherwise ([1], [2], [28], [8]).

These operations are then used to write “programs” which receive a tube
containing DNA strands as input and return as output either “yes” or “no” or
a set of tubes. A computation consists of a sequence of tubes containing DNA
strands.

There are pro’s and con’s for each model (combination of operations). The
ones using operations similar to Adleman’s have the obvious advantage that they
could already be successfully implemented in the lab. The obstacle preventing
the large scale automatization of the process is that most bio–operations rely
on mainly manual handling of tubes. In contrast, the model introduced by Tom
Head in [21] aims to be an “one–pot” tube with all the operations carried out
in principle by enzymes. Moreover, it has the theoretical advantage of being a
mathematical model with all the claims backed up by mathematical proofs. Its
disadvantage is that the current state of art in molecular biology has not allowed
yet practical implementation. Overall, the existence of different models with
complementing features shows the versatility of DNA computing and increases
the likelihood of practically constructing a DNA–computing–based device.

In the sequel we will restrict our attention to the splicing system model of
DNA recombination that has been introduced in the seminal article of Tom
Head, [21], already in 1987. A formal definition of the splicing operation (a
combination of cut and paste), that can be used as the sole primitive for carrying
out a computation, is given in Section 3. We will then prove in Section 4 that for
the DNA model based on splicing we can affirmatively answer both questions
posed at the beginning of this section.

3 A mathematical model: splicing systems

As described in Section 1, a DNA strand can be likened to a string over a four
letter alphabet. Consequently, a natural way to model DNA computation is
within the framework of formal language theory, which deals with letters and
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strings of letters. We specify here only the notions and notations necessary for
our exposition. For further formal language notions the reader is referred to
[38].

An alphabet is a finite nonempty set; its elements are called letters or sym-
bols. Σ∗ denotes the free monoid generated by the alphabet Σ under the op-
eration of catenation (juxtaposition). The elements of Σ∗ are called words or
strings. The empty string (the null element of Σ∗) is denoted by λ. A lan-
guage over the alphabet Σ is a subset of Σ∗. For instance, if Σ = {a, b} then
aaba, aabbb = a2b3 are words over Σ, and the following sets are languages over
Σ: L1 = {λ}, L2 = {a, ba, aba, abbaa}, L3 = {ap| p prime }.

Since languages are sets, we may define the set–theoretic operations of union,
intersection, difference, and complement in the usual fashion. The catenation of
languages L1 and L2, denoted L1L2, is defined by L1L2 = {uv| u ∈ L1, v ∈ L2}.

A finite language can always be defined by listing all of its words. Such a
procedure is not possible for infinite languages and therefore other devices for
the representation of infinite languages have been developed. One of them is
to introduce a generative device and define the language as consisting of all the
words generated by the device. The basic generative devices used for specifying
languages are grammars.

A generative grammar is an ordered quadruple

G = (N, T, S, P ),

where N and T are disjoint alphabets, S ∈ N and P is a finite set of ordered
pairs (u, v) such that u, v are words over N ∪T and u contains at least one letter
of N . The elements of N are called nonterminals and those of T terminals; S is
called the axiom. Elements (u, v) of P are called rewriting rules and are written
u−→v. If x = x1ux2, y = x1vx2 and u−→v ∈ P , then we write x=⇒y and say
that x derives y in the grammar G. The reflexive and transitive closure of the
derivation relation =⇒ is denoted by =⇒∗. The language generated by G is

L(G) = {w ∈ T ∗| S=⇒∗w}.

Intuitively, the language generated by the grammar G is the set of words over
the terminal alphabet that are derived from the axiom by repeatedly applying
the rewriting rules.

Grammars are classified by imposing restrictions on the forms of productions.
A grammar is called of type–0 if no restriction (zero restrictions) is applied to
the rewriting rules and is called regular if each rule of P is of the form A−→aB,
A−→a, A, B ∈ N , a ∈ T . The family of finite languages will be denoted by
FIN, the family of languages generated by regular grammars by REG and the
family of languages generated by type–0 grammars by L0.

Using these formal language theory prerequisites, we can proceed now to
define the splicing operation.
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As described in [21] and modified in [19], given an alphabet Σ and two strings
x and y over Σ, the splicing of x and y according to the splicing rule r consists
of two steps: (i) cut x and y at certain positions determined by the splicing
rule r, and (ii) paste the resulting prefix of x with the suffix of y, respectively
the prefix of y with the suffix of x. Using the formalism introduced in [29], a
splicing rule r over Σ is a word of the form α1#β1$α2#β2, where α1, β1, α2, β2

are strings over Σ and #, $ are markers not belonging to Σ.
We say that z and w are obtained by splicing x and y according to the

splicing rule r = α1#β1$α2#β2, and we write

(x, y)−→r(z, w)

if and only if

x = x1α1β1x
′

1

y = y2α2β2y
′

2

and
z = x1α1β2y

′

2

w = y2α2β1x
′

1,

for some x1, x
′

1, y2, y
′

2 ∈ Σ∗, as shown in Fig.1.

x1α1

︷ ︸︸ ︷
β1x′

1

︷ ︸︸ ︷

︸ ︷︷ ︸

y2α2

︸ ︷︷ ︸

β2y′

2

−→r

x1α1

︷ ︸︸ ︷
β2y′

2

︷ ︸︸ ︷

︸ ︷︷ ︸

y2α2

︸ ︷︷ ︸

β1x′

1

Fig.1. Splicing x = x1α1β1x
′

1 and y = y2α2β2y
′

1 according to the rule
r : α1#β1$α2#β2.

The words α1β1 and α2β2 are called sites of the splicing, while x and y are called
the terms of the splicing. The splicing rule r determines both the sites and the
positions of the cutting: between α1 and β1 for the first term and between α2

and β2 for the second. Note that the site α1β1 can occur more than once in x

while the site α2β2 can occur more than once in y. Whenever this happens, the
sites are chosen nondeterministically. As a consequence, the result of splicing x

and y can be a set containing more than one pair (z, w).
We illustrate the way splicing works by using it to simulate the addition

of two positive numbers, n and m. If we consider the alphabet Σ = {a, b, c}
and the splicing rule r = a#b$c#a, then the splicing of x = anb and y = cam

according to r yields the words an+m and cb. Indeed,

(anb, cam) = (x, y) =

(an−1

︸ ︷︷ ︸

x1

a
︸︷︷︸

α1

b
︸︷︷︸

β1

λ
︸︷︷︸

x′

1

, λ
︸︷︷︸

y2

c
︸︷︷︸

α2

a
︸︷︷︸

β2

am−1

︸ ︷︷ ︸

y′

2

)−→r(a
n−1

︸ ︷︷ ︸

x1

a
︸︷︷︸

α1

a
︸︷︷︸

β2

am−1

︸ ︷︷ ︸

y′

2

, c
︸︷︷︸

y2α2

b
︸︷︷︸

β1x′

1

) =

= (an+m, cb) = (z, w).
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In the case of DNA sequences, the alphabet consists of the four letters, A, T ,
C and G, the cutting could in principle be done by restriction enzymes and the
catenation by ligases. For more biological motivations of splicing, see [21] and
[22].

The splicing operation can be used as a basic tool for building a generative
mechanism, called splicing system. Given a set of strings (axioms) and a set
of splicing rules, the generated language will consist of the strings obtained as
follows. Starting from the set of axioms, we iteratively use the splicing rules
to splice strings from the set of axioms and/or strings obtained in preceding
splicing steps.

If the classical notion of a set is used, we implicitly assume that, after splicing
x and y and obtaining z and w, we may use again x or y as terms of the
splicing, that is, the strings are not “consumed” by splicing. Similarly, there is
no restriction on the number of copies of the newly obtained z and w. More
realistic is the assumption that some of the strings are only available in a limited
number of copies. In mathematical terms this translates in using, instead of sets,
the notion of multisets, where one keeps track of the number of copies of a string
at each moment.

In the style of [13], if N is the set of natural numbers, a multiset of Σ∗

is a mapping M : Σ∗−→N ∪ {∞} where for a word w ∈ Σ∗, M(w) repre-
sents the number of occurrences of w. Here M(w) = ∞ is taken to mean that
there are unboundedly many copies of the string w. The set supp(M) = {w ∈
Σ∗| M(w) 6= 0} is called the support of M . With this modification of the notion
of a set, we are now ready to introduce splicing systems.

Definition 3.1 A splicing system is a quadruple γ = (Σ, T, A, R), where Σ
is an alphabet, T ⊆ Σ is the terminal alphabet, A is a multiset over Σ∗, and
R ⊆ Σ∗#Σ∗$Σ∗#Σ∗ is the set of splicing rules.

A splicing system γ defines a binary relation =⇒γ on the family of multisets
of Σ∗ as follows. For multisets M and M ′, M=⇒γM ′ holds iff there exist x, y ∈
supp(M) and z, w ∈ supp(M ′) such that:

(i) M(x) ≥ 1, M(y) ≥ 1 if x 6= y (resp. M(x) ≥ 2 if x = y);
(ii) (x, y)−→r(z, w) according to a splicing rule r ∈ R;
(iii) M ′(x) = M(x)−1, M ′(y) = M(y)−1 if x 6= y (resp. M ′(x) = M(x)−2

if x = y);
(iv) M ′(z) = M(z)+1, M ′(w) = M(w)+1 if z 6= w (resp. M ′(z) = M(z)+2

if z = w).2
Informally, having a “set” of strings with a certain number (possibly infinite)

of available copies of each string, the next “set” is produced by splicing two of
the existing strings (by “existing” we mean that both strings have multiplicity
at least 1). After performing a splicing, the terms of the splicing are consumed
(their multiplicity decreases by 1), while the products of the splicing are added
to the “set” (their multiplicity increases by 1).
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The language generated by a splicing system γ is defined as

L(γ) = {w ∈ T ∗| A=⇒∗

γM and w ∈ supp(M)},

where A is the set of axioms and =⇒∗

γ is the reflexive and transitive closure of
=⇒γ .

For two families of type–0 languages, F1, F2, denote

H(F1, F2) = {L(γ) | γ = (Σ, T, A, R), A ∈ F1, R ∈ F2}.

(The notation H(F1, F2) comes from both the initial of Tom Head, who first
introduced the notion of splicing, and the resemblance of Fig. 1 to a letter H

viewed sideways.)
For example, H(FIN, REG) denotes the family of languages generated by

splicing systems where the set of axioms is finite and the set of rules is a regular
language. A splicing system γ = (Σ, T, A, R) with A ∈ F1, R ∈ F2, is said to be
of type (F1, F2).

Splicing systems have been extensively studied in the literature. For exam-
ple, the generative power of different types of splicing systems has been studied
in [21], [11], [29], [31], [30], [32], [18], [9], [16]. Decidability problems have been
tackled in [13]. Moreover, variations of the model have been considered: splicing
systems with permitting/forbidding contexts in [9], linear and circular splicing
systems in [22], [34], [44], splicing systems on graphs in [15], distributed splicing
systems in [10], [12]. For a survey of the main results on splicing the reader is
referred to [33].

4 The existence of DNA computers

Having defined a mathematical model of DNA computation, we now proceed to
answer – for this model – the questions raised in Section 2. We start by show-
ing that the splicing systems are computationally complete. By computational
completeness of splicing we mean that every algorithm (effective procedure) can
be carried out by a splicing system. It is obvious that this is not a mathe-
matical definition of computational completeness. For an adequate definition,
the intuitive notion of an algorithm (effective procedure) must be replaced by a
formalized notion.

Since 1936, the standard accepted model of universal computation has been
the Turing machine introduced in [41]. The Church–Turing thesis, the prevailing
paradigm in computer science, states that no realizable computing device can
be more powerful than a Turing machine. One of the main reasons that Church–
Turing’s thesis is widely accepted is that very diverse alternate formalizations
of the class of effective procedures have all turned out to be equivalent to the
Turing machine formalization. These alternate formalizations include Markov
normal algorithms, Post normal systems, type–0 grammars, (which we have
already considered in Section 3) as well as “computable” functions.
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Showing that the splicing systems are computationally complete amounts
thus, for example, to showing that the action of any computable function can
be realized by a splicing system, where the term of computable function is
detailed below (see [42]) .

Mappings of a subset of the Cartesian power set Nn into N, where n ≥ 1
and N is the set of natural numbers, are referred to as partial functions. If
the domain of such a function equals Nn, then the function is termed total.
Examples of total functions (for different values of n) are:

The zero function: Z(x0) = 0, for all x0 ∈ N.
The successor function: S(x0) = x0 + 1, for all x0 ∈ N.
The projection functions, for all i, n and xi ∈ N, 0 ≤ i ≤ n:

Un+1

i (x0, x1, . . . , xn) = xi.

The class of partial recursive functions can be defined as the smallest class which
contains certain basic functions and is closed under certain operations.

An (n+1)–ary function f is defined by the recursion scheme from the func-
tions g and h if:

f(0, x1, . . . , xn) = g(x1, . . . , xn)
f(n + 1, x1, . . . , xn) = h(f(n, x1, . . . , xn), n, x1, . . . , xn).

The operation of composition associates to the functions h, g0, . . . , gk the
function f defined by:

f(x0, x1, . . . , xn) = h(g0(x0, . . . , xn), . . . , gk(x0, . . . xn)),

which is defined exactly for those arguments (x0, . . . , xn) for which each of gi,
0 ≤ i ≤ k, as well the corresponding value of f is defined.

We say that f is defined by using the minimization operation on g, if

f(x0, . . . , xn) =

{
(µy)[g(y, x0, . . . , xn) = 0], if there is such a y

undefined, otherwise,

whose value, for a given (x0, . . . , xn), is the smallest value of y for which
g(y, x0, . . . , xn) = 0, and which is undefined if no such y exists.

A function f is defined partial–recursively if (i) it is the zero function, the suc-
cessor function, or a projection function; (ii) it is defined by composing functions
which are defined partial–recursively; (iii) it is defined by the recursion scheme
from functions which are defined partial–recursively; or (iv) it is defined using
the minimization operation on a function that is defined partial–recursively and
is total.

It was proved that a function f is partial recursive if and only if there is a
Turing machine which computes the values of f . On the other hand, according
to the Church–Turing thesis, everything that can be effectively computed by
any kind of device, can be computed by a Turing machine. As a consequence,
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partial recursive functions came to be known also under the name of (effectively)
computable functions.

The formal language notion equivalent to the notion of a computable func-
tion is the notion of a type–0 language, i.e., a language generated by a grammar
with no restriction imposed on its rewriting rules. One can prove that a lan-
guage is of type–0 if and only if its characteristic function is computable. (By
the characteristic function of a language L ⊆ Σ∗ we mean the function φ of Σ∗

such that φ(w) = 1 if w ∈ L, and φ is undefined otherwise.)
Recalling the notation L0 for the family of type–0 languages, the result

proving the computational completeness of splicing systems can be formulated
as follows.

Theorem 4.1 L0 = H(FIN, FIN).

Informally, the theorem says that every type–0 language can be generated
by a splicing system with finitely many axioms and finitely many rules. Given
a type–0 grammar G generating the language L(G), the proof of the inclusion
L0 ⊆ H(FIN, FIN) consists of two steps: (a) construct a splicing system
γ ∈ H(FIN, FIN), that simulates the rewriting rules of the grammar G, and (b)
prove that the constructed splicing system generates the given type–0 language,
i.e., show the equality L(γ) = L(G). The reverse inclusion can be proved
directly or by invoking the Church–Turing thesis. (The proof techniques used
in Theorem 4.1 were suggested in [13] and first developed in [30]. The reader is
referred to [16] for details.)

In terms of computable functions, Theorem 4.1 states that the work of any
computable function can be carried out by a splicing system. Equivalently,
Theorem 4.1 tells that everything that is Turing–computable can be computed
also by this DNA model of computation. This answers the question as regards
to what kinds of algorithms (effective procedures, computable functions) can be
simulated by DNA computing devices based on splicing, and the answer is: all
of them.

Theorem 4.1 shows that every program (computable function) can be sim-
ulated by a finite splicing system, but this does not say anything about the
existence of a programmable DNA computer based on splicing. To this aim, it is
necessary to find a universal splicing system, i.e., a system with all components
but one fixed, able to behave as any given splicing system γ when a code of γ

is introduced in the set of axioms of the universal system. Formally,

Definition 4.1 Given an alphabet T and two families of type–0 languages,
F1, F2, a construct

γU = (ΣU , T, AU , RU ),

where ΣU is an alphabet, T ⊆ ΣU , AU ∈ F1, and RU ⊆ Σ∗

U#Σ∗

U$Σ∗

U#Σ∗

U ,
RU ∈ F2, is said to be a universal splicing system of type (F1, F2), if for every
γ = (Σ, T, A, R) of type (F ′

1, F
′

2), F ′

1, F
′

2 ⊆ L0, there exists a language Aγ such
that AU ∪ Aγ ∈ F1 and L(γ) = L(γ′

U ), where γ′

U = (ΣU , T, AU ∪ Aγ , RU ).
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Note that the type of the universal system is fixed, but the universal system
is able to simulate systems of any type (F ′

1, F
′

2), when F ′

1 and F ′

2 are families of
type–0 languages, that is, languages with a computable characteristic function.
Based on Definition 4.1 we are now in position to state the main universality
result.

Theorem 4.2 For every given alphabet T there exists a splicing system, with
finitely many axioms and finitely many rules, that is universal for the class of
systems with the terminal alphabet T .

The proof is based on Theorem 4.1 and on the existence of universal type–0
grammars (or, equivalently, universal Turing machines). For the details of the
proof the reader is referred to [16]. Another proof, based on the fact that a
language generated by a Post system can be generated by a splicing system,
can be found in [14].

The interpretation of Theorem 4.2 from the point of view of DNA comput-
ing is that, theoretically, there exist universal programmable DNA computers
based on the splicing operation. A program consists of a single string to be
added to the axiom set of the universal computer. The program has multi-
plicity one, while an unbounded number of the other axioms is available. The
“fixed” axioms of the computer can be interpreted as the “energy” that has to
be constantly supplied to the DNA computer for running the programs. The
only bio–operations used in these computers are splicing (cut/ligate) and ex-
traction (which in mathematical terms amounts to the intersection of the result
with T ∗, where T is the terminal alphabet). In the case of splicing systems,
we can conclude that Theorem 4.2 provides an affirmative answer to the second
question posed in Section 2 with regards to the existence of programmable DNA
computers.

Results analogous to Theorem 4.1 and Theorem 4.2 have been obtained
for several variants of the splicing systems model presented in Section 3. For
example, similar results hold if the condition of the axiom set to be a multiset is
replaced by a control condition: a splicing rule is applicable only when certain
strings, called permitting contexts, are present in the terms of splicing (see [16]).

Constructions showing how to simulate the work of a Turing machine by a
DNA model of computation have also been proposed in [40], [37], [2], [8], [6],
[46], [36]. In an optimistic way, one may think of an analogy between these
results and the work on finding models of computation carried out in the 30’s,
which has laid the foundation for the design of the electronic computers. In
a similar fashion, the results obtained about the models of DNA computation
show that programmable DNA computers are not science fiction material, but
the reality of the near future.
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5 Meta–thoughts on biomathematics

We have seen in Section 2 that the bio–operations are quite different from the
usual arithmetical operations. Indeed, even more striking than the quantitative
differences between a virtual DNA computer and an electronic computer (the
DNA computer winning the comparison on most fronts) are the qualitative
differences between the two.

DNA computing is a new way of thinking about computation altogether.
Maybe this is how nature does mathematics: not by adding and subtracting,
but by cutting and pasting, by insertions and deletions. Perhaps the primitive
functions we currently use for computation are just as dependent on the history
of humankind, as the fact that we use base 10 for counting is dependent on
our having ten fingers. In the same way humans moved on to counting in other
bases, maybe it is time we realized that there are other ways to compute besides
the ones we are familiar with.

The fact that phenomena happening inside living organisms (copying, cut-
ting and pasting of DNA strands) could be computations in disguise suggests
that life itself may consist of a series of complex computations. As life is one of
the most complex natural phenomena, we could generalize by conjecturing the
whole cosmos to consist of computations. The differences between the diverse
forms of matter would then only reflect various degrees of computational com-
plexity, with the qualitative differences pointing to huge computational speed–
ups. From chaos to inorganic matter, from inorganic to organic, and from that
to consciousness and mind, perhaps the entire evolution of the universe is a
history of the ever–increasing complexity of computations.

Just imagine. Perhaps all there was in the beginning was a universal cocktail
of particles. They combined randomly for millions of years, until, by chance,
some patterns of beautiful mathematical symmetry started to emerge: the in-
organic matter. They continued to mix and intermingle until some formations
started to self-replicate (see fractals and iterated functions) and then to do
computations: life appeared. The more complex the computations grew, the
more complex the life forms became, until there was again a sudden leap and
consciousness and mind appeared, apparently out of thin air, but in reality an
inevitable corollary to complexity. Who knows what the next step could be in
this infinite spiral of mathematical evolution?...

Of course, the above is only a hypothesis, and the enigma whether modern
man is “homo sapiens” or “homo computans” still awaits solving. But this is
what makes DNA computing so captivating. Not only may it help compute
faster and more efficiently, but it stirs the imagination and opens deeper philo-
sophical issues. What can be more mesmerizing than something that makes you
dream?

To a mathematician, DNA computing tells that perhaps mathematics is the
foundation of all there is. Indeed, mathematics has already proven to be an
intrinsic part of sciences like physics and chemistry, of music, visual arts (see
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[23]) and linguistics, to name just a few. The discovery of DNA computing,
indicating that mathematics also lies at the root of biology, makes one wonder
whether mathematics isn’t in fact the core of all known and (with noneuclidean
geometry in mind) possible reality.

Why not? Sometimes a graceful move of a dancer seems to hide the truth
of a remarkable theorem, to be the fluid graph of a function with properties
of amazing depth. The more profound the mathematics behind is, the more
striking the beauty. I may discover a (little and insignificant) theorem once in
a while, but she is able to create them by the dozen, theorem after theorem,
function after function with breathtaking properties, just by moving an arm or
hand, just by smiling. The beauty seems ephemeral, but is reproducible and
therefore as eternal as the underlying mathematical truth.

Maybe indeed, Plato was right: Truth, Beauty and Good are one and the
same. Maybe indeed, [35], the material things are mere instances of “ideas” that
are everlasting, never being born nor perishing. By intimating that – besides
everything else – mathematics lies at the very heart of life, DNA computing sug-
gests we take Plato’s philosophy one step further: the eternal “ideas” reflected
in the ephemeral material world could be mathematical ones.

If this were the case, and the quintessence of reality is the objective world
of mathematics, then we should feel privileged to be able to contemplate it.
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