Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 330 (2005) 251—266

www.elsevier.com/locate/tcs

Computationally universal P systems without
priorities: two catalysts are sufficient

Rudolf Freuné*, Lila Kari®?, Marion Oswal@, Petr Sosik°®

8Faculty of Informatics, Vienna University of Technology, Favoritenstra. 9-11, A-1040 Vienna, Austria
bDepartment of Computer Science, The University of Western Ontario, London, Ont., Canada, N6A 5B7
CInstitute of Computer Science, Silesian University, Opava, Czech Republic
Received 18 November 2003; received in revised form 16 April 2004; accepted 4 June 2004

Abstract

The original model of P systems with symbol objects introduceddynRvas shown to be compu-
tationally universal, provided that catalysts and priorities of rules are used. By reduction via register
machines Sosik and Freund proved that the priorities may be omitted from the model without loss
of computational power. Freund, Oswald, and Sosik considered several variants of P systems with
catalysts (but without priorities) and investigated the number of catalysts needed for these specific
variants to be computationally universal. It was shown that for the classic model of P systems with
the minimal number of two membranes the number of catalysts can be reduced from six to five; using
the idea of final states the number of catalysts could even be reduced to four. In this paper we are able
to reduce the number of catalysts again: two catalysts are already sufficient. For extended P systems
we even need only one membrane and two catalysts. For the (purely) catalytic systems considered by
Ibarra only three catalysts are already enough.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Membrane computing; P systems; Catalysts; Complexity; Universality

1. Introduction

In the original paper introducing membrane systems (P systeniéfjras a symbol
manipulating model catalysts as well as priority relations on the rules were used to prove

* Corresponding author.
E-mail addressesrudi@emcc.afR. Freund),lila@csd.uwo.calL. Kari), marion@emcc.af{M. Oswald),
sosik@csd.uwo.c@etr.Sosik@fpf.slu.cP. Sosik).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.06.029

http://www.elsevier.com/locate/tcs
mailto:rudi@emcc.at
mailto:lila@csd.uwo.ca
mailto:marion@emcc.at
mailto:sosik@csd.uwo.ca
mailto:Petr.Sosik@fpf.slu.cz

252 R. Freund et al. / Theoretical Computer Science 330 (2005) 251266

them to be computationally universal; [b8,19] it was shown that a priority relation on

the rules is not necessary to obtain this universality resuli8]ithe number of catalysts

was reduced by one for the variants of P systems with two membranes considered there;
moreover, the number of catalysts could even be reduced by one more when considering
computations reaching some finitely specified final states as in the model of P automata
introduced in2] instead of halting computations. We will now show that even two catalysts
are already sufficient for all these variants.

In extended P systems we specify a terminal alphabet and only consider the terminal
symbols contained in the skin membrane at the end of a successful computation (in effect
this means that we ignore the catalysts, which of course can never be eliminated); again
the skin membrane and two catalysts are sufficienf10j (purely) catalytic P systems
were introduced and from results obtaine@driL8]it was observed that seven catalysts are
sufficient if we only allow rules with catalysts; here we show that even three catalysts are
already enough.

In the following section, after some prerequisites from formal language theory, we give
a precise definition of the model of register machines used in the subsequent proofs. Then
we define the specific variants of P systems considered in this paper. In the further parts of
this paper we show how we can reduce the number of catalysts in P systems with specific
stopping conditions by using new proof techniques for simulating register machines. A short
summary finally concludes the paper.

2. Definitions

For well-known notions and basic results from the theory of formal languages, the reader
is referred td3,17]. We only give some basic notations first. For an alphabéy vV* we
denote the free monoid generated\byinder the operation of concatenation; #mapty
string is denoted byl and V*\ {A} is denoted by . Any subset ofv* (V*) is called a
(/-free) language Two languaged., L’ < V* are considered to be equaliifi {1} =

L\ {2}. Moreover, byNg we denote the set of non-negative integers anngRE we
denote the family of recursively enumerable setﬁﬂbctors(yl, e, y/;) of non-negative
integers. Two sets ¢f-vectors are considered to be equal if they only differ at most by the
zero-vector(@, ..., 0).

Letm >2 and letk, [be two positive integers not greater thanthen we define

l —k, forl > k,

1Ok = {l—k—l—m, for I <k.

2.1. Register machines

Inthis subsection we briefly recall the concept of Minsky’s register machine (e [d2ge
Such an abstract machine uses a finite numbers of registers for storing arbitrarily large non-
negative integers and runs a program consisting of numbered instructions of various simple
types. Several variants of the machine with different numbers of registers and different

R. Freund et al. / Theoretical Computer Science 330 (2005) 251266 253

instruction sets were shown to be computationally universal (e.g18®r some original

definitions and proofs as well #-7] for the definitions and results we use in this paper).

An n-register machinés a construc = (n, P, i, h), where
e nisthe number of registers,

e P is a set of labelled instructions of the forjn: (op (r), k, 1), whereop (r) is an
operation on registerof M, j, k, [are labels from the sétab (M) (which numbers the
instructions of the program ofl represented bp),

e iistheinitial label, and

e his the final label.

The machine is capable of the following instructions:

(A (r),k,1): Add one to the contents of registerand proceed to instructiok or to
instruction/; in the deterministic variants usually considered in the literature we demand
k=1.

(S (r), k,1): If registerr is not empty then subtract one from its contents and go to
instructionk, otherwise proceed to instructidn

Halt: Stop the machine. This additional instruction can only be assigned to the final
labelh.

Intheirdeterministic variantsuchn-register machines can be used to compute any partial

recursive functionf : Ng — Ng; starting with(ny, ..., ny) € Ng in registers 1 tax, M
has computed’ (n1,...,n,) = (r1,...,rp) if it halts in the final labeh with registers
1 to containingry to rg. If the final label cannot be reached,(ns, ..., n,) remains
undefined.

A deterministin-register machine can also acceptaninput . . ., n,) € NJinregisters
1 toa, which is recognized if the register machine finally stops by the halt instruction with
all its registers being empty. If the machine does not halt, the analysis is not successful.

In their non-deterministic variantnegister machines can compute any recursively enu-
merable set of non-negative integers (or of vectors of non-negative integers). Starting with
all registers being empty, we consider a computation ofthegister machine to be suc-
cessful, if it halts with the result being contained in the fﬁ@tregister(s) and with all other
registers being empty.

The results proved if5] (based on the results establishedlif]) as well as ir{6,7] im-
mediately lead us to the following results which differ from the original results mainly by the
fact that the result of a computation is stored in registers that must not be
decremented.

Proposition 1. For any partial recursive functiorf : N — Ng, there exists a determin-
istic (oc +2+ ﬁ)—register machine M computing f in such a way that when starting with

(n1.....ny) € N in registersl to o, M has computed’ (n1, ..., ny) = (r1,....rp) if
it halts in the final label h with registers + 3 to « + 2 + 8 containingr to r, and all
other registers being emptif the final label cannot be reached (n1, ..., n,) remains

undefined. The registets+ 3to o + 2 + f are never decremented

The following two corollaries are immediate consequences of the preceding proposition
(by takinge: = 0 andf = 0, respectively).

254 R. Freund et al. / Theoretical Computer Science 330 (2005) 251266

Corollary 2. For any recursively enumerable setC Ng of vectors of non-negative in-
tegers there exists a non-determinis(t[t+ 2)—register machine M generating L in such a
way that when starting with all registers to 5 + 2 being emptyM non-deterministically
computes and halts witty in registersi + 2, 1<i < f3, and registersl and 2 being empty
if and only if(nl, cees nﬁ) € L. The register8to f + 2 are never decremented

Corollary 3. For any recursively enumerable setc N of vectors of non-negative inte-
gers there exists a deterministiz + 2)-register machine M accepting L in such a way that
M halts with all registers being empty if and only if M starts with samg ..., ny) € L in
registersl to o and the registers + 1 to « + 2 being empty

2.2. The standard model of P systems and variants

The standard type of membrane systems (P systems) has been studied in many papers
and several monographs; we refef1g4, 13—-15ffor details, motivation, and examples. In
the definition of the P system below we omit some ingredients (like priority relations on
the rules) not needed in the following:

A P systen(of degreed, d > 1) is a construct

H=(ch»,u'vwlv"'9wa’7R19""R(15i())’

where
(i) Vis an alphabet; its elements are caltdgects

(i) C C V is asetofcatalysts

(i) u is amembrane structureonsisting ofd membranes (usually labelled withand
represented by corresponding bracKetnd];, 1<i <d);

(iv) w;, 1<i<d, are strings oveW associated with the regions 2, ..., d of y; they
represent multisets of objects present in the regiopgthfe multiplicity of a symbol in
aregionis given by the number of occurrences of this symbol in the string corresponding
to that region);

(v) R;, 1<i<d, are finite sets okvolution rulesover V associated with the regions
1,2,...,d of u; these evolution rules are of the formas— v or ca — cv, wherec s
a catalystais an object fron¥\C, andv is a string from((V\C) x {here, out, in})*;

(vi) i, is a number between 1 aidand it specifies theutputmembrane of 1.

The membrane structure and the multisets represented ,dy<i <d, in II constitute
theinitial configurationof the system. A transition between configurations is governed by an
application of the evolution rules which is done in parallel: all objects, from all membranes,
which can bethe subject of local evolution rulégve toevolve simultaneously.

The application of arule — v in a region containing a multis&t results in subtracting
from M the multiset identified by, and then in adding the multiset identified byThe
objects can eventually be transported through membranes due to the irmagetsut (we
usually omit the targelhere. We refer to [1] and[15] for further details and examples.
According to[10], the P systend] is calledcatalytic, if every evolution rule involves a
catalyst.

The system continues parallel steps until there remain no applicable rules in any region
of IT; then the system halts. We consider the number of objects ¥Yf@ontained in the

R. Freund et al. / Theoretical Computer Science 330 (2005) 251266 255

output membrang, at the moment when the system halts asrdseilt of the underlying
computation of 1. The set of results of all computations possiblélirs denoted bw (I7) .
The class of all sets cﬁ-vectors(yl, cees yﬁ) of non-negative integers computable by P
systems (as the numbersfdifferent symbols to be found in the output membrayet the
end of halting computations) of the above type witmembranes and the set of catalysts

containing at mosin elements is denoted tNgOPgen (d, cat,,, halt) .

We may relax the condition that the output membrane has to be an elementary membrane
where all the elements found there at the end of a halting computation count for the result
of this computation; instead, we may specify a set of terminal objeetsd only count the
number of thes different symbols o’ C V to be found in any specified output membrane
at the end of halting computations; in this way, we obitended system®f the form

In=,2,C,uwi,...,wg, R1,..., Ry, i0)

and the classlg EPg., (d, caty,, halt) .

In addition to these generating membrane systems we may also consider accepting P
systems where the multiset to be analyzed is put into regjagether withw;, and
accepted by a halting computation. The classes of all setsvettors(y1, .. ., y,) of non-
negative integers accepted in that way by halting computations in P systems of these types
with d membranes and the set of catalysts containing at medements are denoted by
NGWP,c. (d, cat,, halt), W € {0, E}.

In [2] accepting P systems were introduced as P automata using final states as accepting
conditions, i.e., instead of the halting condition an input is accepted if the P system reaches
a configuration where the contents of (specified) membranes coincides with the multisets
given by a final state. In more detail, for a P system as defined above a final staté over
is of the form(f1, ..., fz) where eachf;, 1<i <d is either a final multiset ovey or (a
special symbol denoted byl; then the P system accepts its input (giveipirby this final
state if during the computation a configuration is reached such that the contents of every
membrane with f; # A coincides withf;. The special symbaofl indicates that we do not
care about the contents of membrarie f; = A. Hence, a P system with final states is a
construct of the form

H=(V,C,ﬂ,u}l,...,Wd,Rl,...,Rd,i(),F),

whereV, C, u, w1, ..., wq, R1, ..., Ry, i, are defined as above aRds a finite set of final
statesoveV. The class of all sets efvectors(ys, . . ., y,) of hon-negative integers accepted
in P systems witld membranes and the set of catalysts containing at m@déments by
computations reaching a final state is denotetNp@DP,.. (d, cat,, final state .

Yet the idea of final states can also be carried over to generating P systems, i.e., a P system
with final states as above can be used as a generative device, too; instead of considering the
contents of the output membraifpen halting computations, we consider the contents of the
output membrané, in computations having reached a final stgfe . .., f;) (obviously,
in general we must havg, = A). Then the class of all sets ﬂfvectors(yl, ceey y/;) of
non-negative integers generated in P systems avitiembranes and the set of catalysts
containing at mosin elements by computations having reached a final state is denoted by

Ng OPy.x (d, caty,, final statg .

256 R. Freund et al. / Theoretical Computer Science 330 (2005) 251266

Consideringextended P systems with final stavéshe form
II=V,2,C, uwi,...,wg,R1, ..., Rq,i0, F),

where again we only take into account the terminal symbols in the specified mengrane
we obtain the corresponding clasM%fo (d, cat,, final statg, X € {gen, acc}.

If in the variants of P systems defined above only catalytic rules are used, we add
the superscriptcat thus obtaining the classdsgwpg(‘” d,cat,,Y), W € {0, E},
X € {gen,acc}, Y € {halt, final statg .

3. Universality results

In order to prove the main results of this paper we elaborate a more general result using

Propositionl that any partial recursive functiofi : N — Ng can be computed by a P
system (halting or with final states) with only two membranes and withomg catalysts.

3.1. P systems for partial recursive functions

Consider aregister machidewith mregistersy > 1, and letP be the program favl with
ninstructionsy, i, ..., i, computingf such that the lagt registers are never decremented.
We now construct a P system with = m’ — f§ catalysts simulating/. Informally, each
registera is represented by objectg playing the réles of counter elements. The value of
registera at each moment corresponds to the number of symhois the system. There
are also special objects;, 1< j <n, which play the role of program labels; their marked
variants guide the simulation of the instruction labelledpgywithin the P system.

The presence of the marked variapéﬁ‘%’l), 1< <m of the objectp ;,—for each catalyst
there has to be such a marked variant to keep it busy—starts the sequence of operations
corresponding to the instructigh For each of them registers not representing an output
value (where according to the result stated in Propositioanditional decrementing may
be necessary), in contrast to the proofs givefli8] and then in8] we now need only
one catalyst because we use the concept of “paired catalysts”: together with the catalyst
associated with registerwe also associate (“pair”) another catalyst (we shall taks 1)
which together witte, will do the correct simulation of an instructigh: (S (a) , k,1) € P
in four steps; the remaining catalystso » with 2<h < m are occupied by the marked
variants ofp;, p;h’”, 1<i <4, during these four steps, and t}ng”4> are eliminated in the

fourth step, before in the next step the new multiggt” - .. p™ or p-¥ ... p™b of

(marked) program labels appears. The simulation of an instrugtio®A (a) , k, k) € P

needs only one step. Finally, if the multisgf’l> e pf,'”’l) representing the final label
appears, these objects are also eliminated in one step, whereafter the computation halts
if and only if it has been successful, i.e., no trap symbol # is present (after having been
generated during the simulation of some subtract-instruction).

R. Freund et al. / Theoretical Computer Science 330 (2005) 251266 257

Theorem 4. For each partial recursive functiorf : Ng — Ng, there is a P system
I = (V,C,[1l2]2]1, w, A R, 9, 2) with « + 2 catalysts and with the objects, € V
satisfying the following condition&or any arbitrary (x1, ..., x,) € N2, denote

H(XJ_ Xo) — (Vs Cv [1[2]2]1» woil e 0;1, ;L, R, Qa 2) .

The systenfil(y, ... x,) can haltif and only iff (x1, ..., x,) is defined and if it haltghen in
the skin membrane only the catalysts remain and in the output memb@mlg terminal
symbolso,;3t0 0,4, g appear in such away tha¥ (Ixy....x,)) = {f (x1. ..., x2)}.

Proof. Consider a (deterministic) register machies defined above with' registers, the
lastp registers being special output registers which are never decremented. (From the result
stated in Propositiofh we know thain’ = «+ 2+ f is sufficient.) Now lein = m’ — fand
let P be a program which computes the functiosuch that the initial instruction has the
label 1 and the halting instruction has the labeThe input valuesy, . . ., x, are expected
to be in the firstx registers and the output values frgfixy, .. ., x,) are expected to be in
registersn + 1 tom’. Moreover, at the beginning of a computation all the registers except
possibly the registers 1 tocontain zero.

We construct the P system

I = (V» {ei 11<i<m), [1l2l)n, €1 - cmpi™Y - pi™ Y 2 R, 0, 2)
with
V ={#U{c.c,11<i<m} U {or | 1<k<m’}U
{pnh'l> | 1<h<m] U{p}h’l) | 1<h<m, j:(A(a),k k) e P]u
{pﬁ.”'” | 1<h<m, j:(S(a), k1) € P}u
{pj.”” |2<h <m, 1<I<4, j:(S(a).k,]) € P}u
(Pl 0. By s B By) P12 (S @) kD) € P
and
R={x—>#|xeV\(CU{ox| 1<k<m'}

ul#) 517 S@.kner))]

(h,1)
n

) {Cm@mhp _>Cm@mh|1<h<m}

U {cm@mhp;h’l) — cmo,n | 1<h <m, 1<a <</,

258 R. Freund et al. / Theoretical Computer Science 330 (2005) 251266
J:(Aa),k k)€ P}
U {enp!" = cupf™V - "o, | 1<a<m, j: (4@ k. k) € P}

U {cmpﬁ'm’l> g CmP/il’D T pém,l} (0g,in) |m < a<m’,
Jji(A(a),k, k) e P}
U {eag, "™ = cagup{" | 2<h <m, 1<a<m,
1<I<3, j: (S(a),k, 1) e P}
U {ca@ hpj' — capn | 2<h <m, 1<a<m, j:(S(a),k 1) e P]
(m,1) -
U CapJ - Capjpj CaP — CaPjPiPjs
Ca0q —> CaClyy CaCly —> CqClr,
Caﬁj — Cq, Ca@mlcg — CaQ,,1, ca[a;‘ — Cq#, Ca@mlﬁ} i Ca@mlﬁ}/v
=/ i 4 /
Ca®mlpj - Ca@mlpj, Ca@mlpj - Ca@mlpj,
R 11 1
cap| = capi - pi" Y
capy > capf™ o p"Y | 1<a<m, (S @) kD) € P
1,1 A~ -
U {Ca6mly — cag,1 |y € {pﬁ ' B, p}],
1<a<<m, j:(S(a),k,1) € P}. O

Thenforan arbitraryx, . . xa) € Ng the axiom of the corresponding systéfn,, ..
iscy. c,,,p§l D -pi’"’”o’l‘1 ...0y*. The contents of register, 1<a <m is represented

by the sum of the number of symbalg and conditional decrementing actions on this
register are guarded by the pair of catalyst@ndc,g 1. The set of ruleR depends on
the instructions oP; the halting instruction as well as each add-instruction is simulated in
one step, whereas each subtract-instruction is simulated in four steps; in more detail, the
simulation works as follows: "

f’l‘l

(1) Every simulation of a rule starts with the program lal SR p . The halting
1

instruction eliminates the final Iabqbél’l), e p,ﬁ’” b by using the ruleem@mhpfl b

— cmo, n, L<h<mj; if the computation has been successful, then only the catalysts
remain in the skin membrane, whereas the result of the computation, i.e., the number
of symbolso,, 11 t0 0,1 g, can be found in the output membrane 2

(2) Each add-instruction : (A (a),k, k) € P, 1<a<m (m < a<m’, respectively) is
simulated in one step by using the catalytic ruigs) » p;h’l) — tme,hy 1<h <mas

N 1,1 1 1 1,1 1 .
WeIIaScmpﬁ.m N cmp,i ’. p,ﬁm 04 (andcmp;.’” N cmp,(c) ~~p,<(m ' (0a.in),

R. Freund et al. / Theoretical Computer Science 330 (2005) 251266 259

respectively, i.e., ifais the index of a register representing a component of the result
vector of the computation, then the symlgl is immediately moved to the output
membrane 2). Observe that by definitio®,,m = a for all awith 1<a <m.

(3) Each subtract-instruction: (S (a), k,1) € P is simulated in four steps. We have to
distinguish between two cases depending on the contents of registdioth cases the
catalyste, o 5, 2<h < m, are busy with the objecl;sﬁ.h’”, 1<i<4;the object37<.h’4>
finally are eliminated in the fourth step. The main part of the simulation is accomplished
by the catalyst, and its “paired companiort, o 1:

(a) We non-deterministically assume that the contents of regasiemnot empty; we

start with the I’U|e3‘up§-m’l) — Caﬁjﬁ; andca@mlp;l’l> — ¢q0,,1- In the second
step, the number of symbalg is decremented by using the rule, — c,c); ifin
contrast to our choice, no such symbglis present (i.e., the contents of the register
represented by the number of symb@|ss empty), then by the enforced application

of the ruIecaﬁ} — ¢,# the trap symbol # is introduced, which causes a non-halting
computation due to the rule # #. If ;3;. could wait until being used in the third
step by the ruleea@mlﬁ;. — Ca@,,,lﬁ}/, then the simulation will be successful: In

the second stepyo,,1 is used in the rule:aemlﬁj — 1o, 1, and in the third

stepe, is used in the rule,c,, — c,cl. We finish with the application of the rules

. (1.1) (m,1)
Cap;'/ — capy Dy andca@mlc;’ — Ca@,,1-

(b) For the other case, we non-deterministically assume that the contents of ragister

is empty; we start with the two rules, p!™" — caPjpP;p} andca@mlpﬁl’”

%
J
cao,1- In the second step, we are forced to use the two rul¢s — ¢, and
Ca@mll;;/ — Ca@m1p;-/ in order not to introduce the trap symbal i the third
step, we only usea@mlp}’ — ca@mlp; and finish with applying the two rules

capy — cap;l'l) ...pl<’”’1> ande,g,1P; — cqo,1 in the fourth step. In the third

step the catalyst, is not used if our non-deterministic choice has been correct, i.e., if
there is no symbal, presentin the skin membrane; otherwise, thedybg — c,c/,

has to be applied in the third step, but in this case hgtandp;. would need the
catalystc, in the fourth step of the simulation in order not to be sent to the trap
symbol #

Any other behavior of the system as the one described above for the correct simulation
of the instructions oP by the rules irR leads to the appearance of the trap object # within
the system, hence, the system never halts.

It follows from the description given above that after each simulation of an instruction
the number of objects, equals the contents of registerl<a <m'. Hence, after having
simulated the instructioHalt and halting the system, the number of symlgls1 too,, 1 g
in the output membrane 2 equals the output of the progParithe only other objects
remaining within the system are time catalysts in the skin membrane; according to the
result about register machines stated in Propositiom = o + 2 and therefore: + 2
catalysts are enough.[]

For P systems with final states, we can immediately take over the construction given in
the preceding proof:

260 R. Freund et al. / Theoretical Computer Science 330 (2005) 251266

Corollary 5. For each partial recursive functiorf : N3 — Ng there s a P system with
final stated1" = (V C, [1[2]12]1, w, A, R, @, 2, F) with o+ 2 catalysts and with the objects
04 € V satisfying the following conditions: For any arbitrarfys, . .., x,) € N3, denote

g, .y =(V.C ll2l2l1, woi* -+ 03*, 2, R, 0,2, F).

The systenﬂF +,) eaches a final state if and only ff (x1, ..., x,) is definedand in
the final state the output membrakeontains only terminal symbodz;‘,,ﬂ t00,,4 5 insuch

awaythatN((1.)={f(x1,...,xa)}.

Proof. The only difference to the P system constructed in Theodeis that we have

to define the final state for successful computations, which simply is the contents of
the skin membrane at the end of a halting computation, d¢e.,.c,. Hence, taking

F = {(c1...cm, A)} we obtain the P system with final statdS is (1T, {(c1...cm, A))),
wherell is the P system constructed in the proof of Theodem([

In catalytic systems we only need one more catalyst for the rules handling the trap
symbol #:

Corollary 6. For each partial recursive functioff : Ng — Ng there is
(1) a halting catalytic P system

" = (V U{co}. C U {co}. [1l2]2l1. w. 4 Re. 9, 2)
(2) a catalytic P system with final states
II°F = (V U{co} . C U{co}. [al2l2l1. w. 4 Re. 9,2, F)

respectivelywith o + 3 catalysts and with the objects, € V satisfying the following
conditions For any arbitrary (x1, . .., x,) € N%, denote
@ = (VUlco). CU{co}. [al2lals. woyt - - 03, A Re. 9, 2)

and

(2) H(xl ,,,,, Xy) = (V) {CO}) C U {CO}) [1[2]2]17 wojc_l e 0:’;“9 ;L, RC’ ®7 25 F))
respectlvely. The system

Q) 1t halts
@ nef reaches a final state
respectlvelylf and only if f (x1, ..., xy) is defined and

(1) in the halting computation or

(2) in the final state

respectivelyin the skin membrane only the catalysts remain and the output memBrane
contains only terminal symbois, 1 to o,,, 5 in such a way that

NI) =N (I8,) = G x)

R. Freund et al. / Theoretical Computer Science 330 (2005) 251266 261

Proof. Therules inR are obtained from the rulesiconstructed in the proof of Theorefn
by just replacing the rules in

{x S H#xeV\ (cu {ﬁ;,ﬁ; 1j:(S@), k1) e P} U fox | 1<k<m/})}
with the rules in
{cox—>co#| xeV\ ({p;,pju (S(), k1) e P}
Ufoc] 1<k<m'))}
using the additional catalysy. [

In extended P systems we do not need the additional output membrans;; Reatalysts
(o« + 3 catalysts in catalytic systems) in the skin membrane are sufficient.

Corollary 7. For each partial recursive functionf : Ng — Ng there is
(1) an extendedhalting) P system withx + 2 catalysts

5= (V,2,C.liw, Rp),
(2) an extended P system with final states with 2 catalysts
S = (V,2,C. i1 w, Re, {e1. . cn)) s
(3) a catalytic extende¢halting) P system with: + 3 catalysts
= (V U{co}, 2, CU{co}, [1]1, w, RE) ,

(4) a catalytic extended P system with final states with 3 catalysts

IT°FF = (V U {eo}, 2, C U{co}, [1l1, w, RE, {coc1 ... cm))
respectivelywith ¥ = {ox | m + 1<k<m + B} and the objects, € V satisfying the
following conditions for any arbitrary (x1, ..., x4) € N%, denote the corresponding P
system by
(1) H(x1 X)) = (V 2, C, 111, wol . -oéc‘,RE),
(2) H(Exli (Vv Za Cv 1]17 woil e 0;9(9 RE? {Cl s Cm}) s
(3) H?)CE]_ ,,,,, Xy) (V U {CO} Z C U {CO} 1]17 woar_l e O(X ’ RE)
(4) H?E',:,,,,x%) = (V Uf{co}, 2, CU{co}, [1]1, woi* - -~ 0", RE, {coct ... cm})
respectlvely
(@) H(Xl _____ ,) halts
(2) I'I(X1 ’’’’’ halts,

262 R. Freund et al. / Theoretical Computer Science 330 (2005) 251266

(3) HEF

(r1....x,) f€aches the final statg . .. ¢,

(4) " reaches the final stateycs . . . i,
respectivelyif and only if f (x1, ..., x,) is definedand after halting the computation or
after having reached the final statespectivelyin the skin membrane only the catalysts

and the terminal symbots,, 11 to 0,,,. 3 remain in such a way that

N(HG,....)) = f (1. %) for G e (E, EF, cE cER.

Proof. The rulesink g are obtained from the rulesiconstructed in the proof of Theoretn
(and Corollarys) as well as from the rules iR¢ constructed in the proof of Corolla6/by
just replacing each occurrence(©f,, in) by o, (which in fact meanso,, here)). O

3.2. Generating P systems

The following corollaries are immediate consequences of Thedramwell as Corol-
laries5-7 by takinga = 0 and simulating non-deterministic register machines:

Corollary 8. NgOPgm (d, catp, halt) = NgREfor everyd > 2.

Proof. We only prove the inclusioNgRE - NgOPgm (2, catp, halt) . In the same way

as in the proof of Theorerd the P systeni] was constructed in order to simulate the
(deterministic) register machine from Propositignve now construct a P systeffi which
simulates the non-deterministic register machine from Corollaapnd in that way non-
deterministically generates a representation of any vector from the given language

NgRE by the corresponding numbers of symbeido o, 5. Hence, we define
' = (v, C, 1l2l2l1, w, 4, R, 9, 2),

whereR’ is constructed in a similar way &Sin the proof of Theorerd, except that now
in the non-deterministic case we have add-instructions of the formA (a) , k, 1) for
someua, k, I with a € {1, 2} and 1<k, [<n; for their simulation we now not only need the
rule cmpﬁ.m‘l> — cmp,il’l> e plgm’l)oa, but a|SOcmp§m‘l) — cmpl(l‘l> e p;m’noa in R'.
Obviously,N (H’) = L. By the given construction, we only need 2 catalysts]

As the result is interesting of its own, we completely speflfy as only two catalysts are
needed, we can use a less complex notation, because these two catalysts form the only pair
used in the simulation of any subtract-instruction, i.e., we do not need the objjééis
2<h < m, 1<i <4, for the subtract-instructiong : (S (a),k,l) € P. Using p; andp,
instead ofpﬁ.’"’1> and p;l’l), we obtain the following P systedi’:

1" = (V' {c1, c2}, [1l2]2]1, crc2p1p1, 4, R, 9, 2)

R. Freund et al. / Theoretical Computer Science 330 (2005) 251266 263

with
V' = {#U{c1. cf, cf, c2, b, g} U o | 1<k<m'}
U {pj,ﬁj,p},p}’, Pis Py B Bjs s D1 J 2 (S(@), k1) € P}
Ulpj.pjli:(A@, kD) e Pl
and

R'= x> #1xe|ps by oo p} by 5 by B) 17 S@. kD e P
Ufx = #|xe{c].c].ch 5} U#— # Ufcipn — c1. c2pn — c2}
U {clﬁj —c1| j:(A), k1) e P}

U {capj = c2piPr0a. c2pj — c2piproa | a € {1, 2},
j:(Aa), k1) e P}

U {copj — copipr (0a.in) | 2 <a<m', j:(A(a),k k) € P}

U {capj — caﬁjﬁ},capj — caﬁjﬁ;ﬁ;f,caoa — CqClys CaCly —> CaCll,
€3-aCq —> €3-a> CaP; = Ca¥t, €3-a P = €3-a P}, CaP] = Ca Pk Pk:
CaPj = Cas €3—aPj = €3-aP}, c3-aP} = c3-aD},
cably > capipi | @ € {12}, j: (S @), kD)€ P)

U {ea-ay = caa Ly {5y . Bj} a e (1.2 S@. kD e P

The following table shows how a subtract-instructipn (S (@) , k,) € P is simulated
depending on the contents of register

Simulation of the subtract-instructigh: (S (@), k, [) if
the contents of registeris not empty the contents of regisgeis empty

o A -
capj = caPjp capj = caPjpiP}
C3—qPj —> €3—q €3—qPj —> C3—q
Ca0a = CaCly CaPj = Ca

~ =/ 4
€3—aPj = €3—a C€3-aPj = €3-alj

/)
cacl = cacly

C3—a ﬁ; — €3—a ﬁ;, C3—a17;'/ - C3—a17}
Caﬁ}/ — Ca Pk Pk Cul’;' — CapID]

=/
C3—ac/a/ — €3—a €3-al; — C3—a

264 R. Freund et al. / Theoretical Computer Science 330 (2005) 251266

We should like to mention that at any tineg can be used in the rule,o, — c4c),
but carried out at the wrong time, the application of this rule will immediately cause the
introduction of the trap symbol # and therefore lead to a non-halting computation. Moreover,
making the wrong choice when simulating a subtract-instruction also leads to the (enforced)
introduction of the trap symbol and therefore to a non-halting computatiah.

Corollary 9. NgOng,, (d, caty, final state = NOﬁRE for everyl > 2.

Proof. In the same way as in the proof of CorollaBythe P systeniI” was constructed
from the P systendl constructed in the proof of Theorefmve now can construct the P
system with final states generating a et Ng RE from the P system constructed in the
proof of Corollary8. [

Obviously, the results obtained so far are optimal with respect to the number of membranes
in the P systems constructed in the proofs of Theofeand Corollarie$-9.

For catalytic P systems, if10] it was proved that with one catalyst we cannot reach
universal computational power; hence, only the case of two catalysts in catalytic P systems
remains for a suitable characterization, because from Corolld@es 9 we immediately
infer the following results (in the same way as Corollényas an obvious consequence of
Theorem4 and Corollarys):

Corollary 10. For everyd >2, we have

NgREz NgOP"‘” (d, cats, halt) = NgOP"‘” (d, cat, final state .

gen gen

The proofs of the following results immediately follow from preceding proofs, too (see
Corollary7):

Corollary 11. For everyd > 1, we have
e

NSRE = NSEPy., (d, catz, Y) = NJEPSY (d, cats, Y)

for everyY e {halt, final statg.

3.3. Accepting P systems/P automata

The following corollaries are immediate consequences of Thedramwell as Corol-
laries5-7 by taking = 0. Although for P automata we now have the minimal number of
only one membrane, the number of catalysts depends on the naunobeomponents of
the vector of non-negative integers to be analyzed.

Corollary 12. For everyd >1, we have
NGRE = N XPycc (d, catyy2, Y) = NGXPY (d, cat,13, Y)

acc

for everyX € {0, E} andY e {halt, final statg .

R. Freund et al. / Theoretical Computer Science 330 (2005) 251266 265

Proof. We first prove the inclusioNJRE € NJOP,.. (1, cat,,, halt). In the same way

as in the proof of Theorer the P system there was constructed in order to simulate the
(deterministic) register machine from Propositibnwe now construct a P system which
simulates the (deterministic) register machine from Corol@nAs we have no output,

we simply omit the output membrane; moreover, we have no rules sending an object into
another membrane. The rest of the construction is exactly the same as in Thedtem

the remaining variants of accepting P systems and P automata we only refer to the proof
ideas elaborated in the preceding proof&]

For the simplest case of = 1, therefore the maximal number of catalysts needed for
accepting languages froNﬁRE by P systems is 3 and by catalytic P systems is 4

4. Conclusion

The number of catalysts can be seen as a complexity measure for P systems with catalysts.
Only the characterization of functions computed or sets generated/accepted by the variants
of P systems considered in this paper having one catalyst less remains as an interesting
open question for future research; yet we conjecture that for computationally universal P
systems the results obtained in this paper are already optimal not only with respect to the
number of membranes, but also with respect to the number of catalysts.

Even some more results can be foungdh in particular, there we also consider several
variants of P systems with catalysts generating/accepting strings and show that only two
catalysts (three catalysts for the catalytic variants) in only one membrane are already suffi-
cient for obtaining universality. Again we conjecture that these results are already optimal
even with respect to the number of catalysts.

In [11], the bounds for the number of catalysts and/or membranes were improved (with
respect to the optimal results known before this paper) by introducing more powerful types
of catalysts like so-called bi-stable catalysts and mobile catalysts. The authors showed that
a P system can generate all recursively enumerable number sets using (a) five membranes,
two catalysts and one bi-stable catalyst, (b) three membranes and one mobile catalyst, (c)
two membranes and two mobile catalysts. From these results, case (a) has become obsolete
by the results obtained in this paper, whereas case (b) may give a chance for improving
this result for mobile catalysts. Using only one catalyst in several membranes is another
interesting case to be investigated.

Acknowledgements

We gratefully acknowledge the most interesting discussions with Gheogine &d
other participants of the brainstorming week on P systems in Tarragona at the beginning of
February 2003 as well as of the Fifth International Workshop Descriptional Complexity of
Formal Systems in Budapest, the stays of the Austrian authors being supported by MolCoNet
project IST-2001-32008. The research of Petr Sosik was partly supported by the Grant

266 R. Freund et al. / Theoretical Computer Science 330 (2005) 251266

Agency of Czech Republic, Grant No. 201/02/P079. The research of Lila Kariwas supported
by the Canada Research Chair Program and NSERC Discovery Grant.

References

[1] C.S. Calude, Gh.&in, Computing with Cells and Atoms, Taylor & Francis, London, 2001.

[2] E. Csuhaj-Varju, Gy. Vaszil, P automata or purely communicating accepting P systems, inadh.G2”
Rozenberg, A. Salomaa, C. Zandron (Eds.), Membrane Computing, Internat. Workshop, WMC-CdeA 2002,
Curted de Args, Romania, August 2002, Lecture Notes in Computer Science, vol. 2597, Springer, Berlin,
2003. pp. 219-233.

[3] J. Dassow, Gh. &in, Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1989.

[4] J. Dassow, Gh. &in, On the power of membrane computing, J. Univ. Comput. Sci. 5 (2) (1999) 33—49.

[5] R.Freund, Gh. &in, Onthe number of non-terminals in graph-controlled, programmed, and matrix grammars,
in: M. Margenstern, Y. Rogozhin (Eds.), Machines, Computations and Universality, 3rd Internat. Conf., MCU
2001, Lecture Notes in Computer Science, vol. 2055, Springer, Berlin, 2001, pp. 214-225.

[6] R.Freund, Gh. &in, From regulated rewriting to computing with membranes: collapsing hierarchies, Theoret.
Comput. Sci. 312 (2004) 143-188.

[7] R. Freund, M. Oswald, GP systems with forbidding context, Fund. Inform. 49 (1-3) (2002) 81-102.

[8] R. Freund, M. Oswald, P. Sosik, Reducing the number of catalysts needed in computationally universal
systems without priorities, in: E. Csuhaj-Varjd, C. Kintala, D. Wotschke, Gy. Vaszil (Eds.), Fifth Internat.
Workshop Descriptional Complexity of Formal Systems, Budapest, Hungary, July 12-14, 2003, MTA
SZTAKI, Budapest, 2003, pp. 102-113.

[9] R.Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems without priorities: two catalysts
are sufficient, Techn. Report, Vienna University of Technology, 2003.

[10] O.H. Ibarra, Z. Dang, O. Egecioglu, G. Saxena, Characterizations of catalytic membrane computing systems,
in: B. Rovan, P. \Vojtas (Eds.), 28th Internat. Sympo. on Mathematical Foundations of Computer Science
2003, MFCS 2003, Bratislava, Slovakia, August 25-29, 2003, Lecture Notes in Computer Science, vol.
2747, Springer, Berlin, 2003, pp. 480-489.

[11] S.N., Krishna, A. RUn, Three universality results on P systems, in: M. Cavaliere, C. Martin-Vide,aah. P~
(Eds.), Brainstorming Week on Membrane Computing; Tech. Report No. 26, Tarragona, February 5-11, 2003,
Rovira i Virgili University, 2003, pp. 198-206.

[12] M.L. Minsky, Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ, 1967.

[13] Gh. Raun, Computing with Membranes: an Introduction, Bull. EATCS 67 (1999) 139-152.

[14] Gh. Raun, Computing with Membranes, J. Comput. System Sci. 61 (1) (2000) 108—-143.

[15] Gh. Paun, Membrane Computing: An Introduction, Springer, Berlin, 2002.

[17] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer, Berlin, 1997.

[18] P. Sosik, The power of catalysts and priorities in membrane systems, Grammars 6 (1) (2003) 13—24.

[19] P. Sosik, R. Freund, P Systems without priorities are computationally universal, ina®h.®-"Rozenberg,

A. Salomaa, C. Zandron (Eds.), Membrane Computing. Internat. Workshop, WMC-CdeA 2002 GQairte”
Arges, Romania, August 2002, Lecture Notes in Computer Science, vol. 2597, Springer, Berlin, 2003, pp.
400-409.

	Computationally universal P systems without priorities: two catalysts are sufficient
	Introduction
	Definitions
	Register machines
	The standard model of P systems and variants

	Universality results
	P systems for partial recursive functions
	Generating P systems
	Accepting P systems/P automata

	Conclusion
	Acknowledgements
	References

