Theory Comput. Systems 32, 69-112 (1999)

Theory of
Computing
-Systems

-© 1999 Springer-Vertag
New York Inc.

DNA Cdmpuﬁng Based on Spﬁcing:
- The Existence of Universal Computers*

R. Freund!, L. Kari?, and Gh. Pfun’

nstitute for Computer Languages, Technical University Wien, *
Resselgasse 3, 1040 Wien, Austria
freund@logic.tuwien.ac.at

2Department of Computer Science, University of Western Ontatio,
London, Ontario, Canada N6A 5B7 :
Ikari @csd.uwo.ca

3nstitute of Mathematics of the Romanian Academy,
PO Box 1-764, 70700 Bucuresti, Romania
gpaun@imar.ro

Abstract. We prove that splicing systems with finite components and certain con-
trols on their work are computationally complete (they can simulate any Turing
Machine); moreover, there are universal splicing systems (systems with all compo-
nents fixed which can simulate any given splicing system, when an encoding of the
particular system is added—as a program-—to the universal system). -

Splicing systems are based on the splicing operation which is a model for DNA
recombination. Informally, a prefix of a word is catenated to a suffix of another
word, thus yielding a (possibly) new word. Cutting occurs at specific sites which
correspond to specific sequences in DNA strands as they can be recognized by
restriction enzymes.

When no additional control is assumed, splicing systems with finitely many
starting words (axioms) and finitely many splicing rules are known to characterize
only regular languages (those recognized by finite automata) However when a
splicing rule is allowed to be used

(1) onlyi m the presence of certain symbols (“catalyst™) or |
(2) only in the absence of certain symbols (“inhibitors”),

* This research was supported by the Academy of Finland, Project 11281, and Grants OGP0007877 and
OGP0000243 of the National Science and Engineering Research Council of Canada. All conespondence to
Gheorghe Piun.

Copyright © 2000 All Rights Reserved

[R. Freund, L. Kari, and Gh. Pdun

then we can characterize the recursively enumerable languages (recognized by Tur-
ing-Machines); the same result is obtained when counting the number of copies of
(some of) the words used. From the proofs, we also infer the existence of universal
(hence programmable) splicing systems.

1. Introduction

1.}. Goals and General Framework

The main goal of this paper is to find computablhty models based on DNA mampulatlons
and equal in power to Turing Machines.

We reach this goal by considering splicing systems, language-generatmg devices
using as the basic operation the splicing operation, introduced in Head (1987) as a
formal model for DNA recombination under the influence of restriction enzymes and
ligases. (The splicing operation has been investigated widely in the last years as an
abstract operation on words and languages; see references, e.g., in Péun (1995a) and in
Head et al. (1997).)

We have to stress the fact that we look for theoretical models of computability,
not for, say, practical computer designs; we discuss the assumptions on which the con-
structions and the proofs are based and we try to keep these constructions as close as
possible to biochemical reality, but still our models are quite liberal and idealized in
their assumptions, at least compared with the current laboratory possibilities. Moreover,
we are not interested in the efficiency of our models (time, space, or other complexity
measures), but in their competence, comparing their power with the power of existing
computing devices (Turing Machines and restricted variants of them). On the other hand,
as one can see in the paper, without such assumptions we cannot obtain computational
completeness and universality.

The topic of our work falls in a general research trend, aiming at developing new
types of algorithms and designing new types of computability models (maybe also com-
puters) which differ from the classical Turing/von Neumann notions of algorithms and
computers in a fundamental way. Special attention has been paid to biological-like com-
puting, as illustrated by the well-developed area of neural computation and that of genetic
algorithms (Davis, 1991; Hertz et al., 1991; Koza and Rice, 1992.)

Such a rather new area is that of DNA computing, which is based on the observatlon
that the incredibly complex structure of a living being results from applying a few simple
operations (local mutations, copying and splicing/recombination/crossing over) to an
initial DNA sequence. The complexity of the output implies that these operations are
powerful and of a very fundamental nature.

These observations, together with the continuously increasing feasibility of DNA
synthesis and of manipulating it in laboratory conditions, suggest the idea that any
complex computation can be carried out by starting from an initial information, encoded
in a DNA-like sequence, by performing the operations mentioned above. -

Indeed, at the end of 1994, this idea started to be implemented: Adleman (1994) re-
ports the way of solving (a small instance of) the Hamiltonian path problem in a test tube,
just by handling DNA words. A series of enthusiastic (yet also less enthusiastic) reac-
tions followed, see Gifford (1994), Hartmanis (1995), and Lipton (1994), (1995). Lipton

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 1

(1995) describes the way to solve the satisfiability problem by DNA computing. At the
beginning of 1995, Adleman (1995) developed the idea, proposing a formal framework
(a sort of test tube programming language for encoding molecular algorithms).

Yet two fundamental problems have still remained open (or at least not answered in
a satisfying manner):

1. Are the classes of DNA algorithms computationally complete, in the sense that
every algorithm (hence every Turing Machine or every equivalent mechanism)
. can be encoded as a DNA algorithm in a specified class? .)
2. Are there universal and programmable DNA computers, i.e., fixed “test tube
computers” that are able to run any arbitrarily given program/algorithm?

These problems are already formulated in the papers quoted above: “It seems likely
that a single molecule of DNA can be used to encode the instantaneous description of
a Turing Machine and that currently available protocols and enzymes could (at least
under idealized conditions) be used to induce successive sequence modifications, which
would correspond to the execution of the machine” (Adleman, 1994). “If we were able
to construct a universal machine out of biological macromolecular components, then we
could perform any computation by means of biological techniques. There are certainly
powerful practical motivations for this approach, including the information-encoding
density offered by macromolecules and the high energy efficiency of enzyme systems.
At present, there is no known way of creating a synthetic universal system based on
macromolecules. Universal systems require the ability to store and retrieve information,
and DNA is certainly up to the task if one could design appropriate molecular mechanisms
to interpret and update the information in DNA. This ultimate goal remains elusive,
but once solved, it will revolutionize the way we think about both computer science
and molecular biology. A great hope is that as we begin to understand how biological
systems compute, we will identify a naturally occurring universal computational system”

(Gifford, 1994).
It is somewhat intriguing why the problems mentloned above were not investigated

for the “programming language in Adleman (1995) (thlS is also true for genetic algo—
rithms (Goldberg, 1989).

In this paper we investigate a class of computing (language-generatmg) mechamsms
based on an operation specific to DNA recombination, i.e. the operation of splicing. For
various types of such mechanisms we afﬁrmatlvely solve both the problems mentioned
above: : :

(1) these mechanisms are computationally complete, and
(2) there are universal mechanisms for each class we consider.

1.2. The Organizatibn of the Paper '

In the following subsection we informally introduce the splicing operation, as a model
of DNA recombination under the influence of restriction enzymes and ligases. The in-
formation given should be sufficient for the computer scientists to follow the remaining
sections of the paper, without any need for further biochemical knowledge. For fur-
ther details, the computer scientist can consult expos1tory papers like Hunter (1993) or
monographs like Li and Graur (1991). : ¥

_Copyright © 2000 All Rights Reserved

72 : ’ - R.Freund, L. Kari, and Gh. Piun

Then (Section 1.4) we try to make familiar, especially to the molecular biologist,
some fundamental notions we use, such as language-generating devices, splicing systems
(ot H systems), and universal computing mechanisms. Of course, the paper cannot be
made self-contained from this point of view if still keeping its length in reasonable limits,
but the significance of the results (maybe not their proofs) and, mainly, the assumptions
on which they rely should be clear just on the basis of these explanations.

In Section 2 we enter the technical part of the paper; the reader interested in the
technical development of our approach can start from there. Section 2 introduces the
notion of (extended) H systems and of the generated language, exemphfymg the defini-
tions. Section 3 introduces the notion of a multiset, then the power of H systems based on
multisets is investigated. Section 4 consrders H systems with permitting and forbidding
context conditions.

In all cases we prove that charactenzatnons of recursively enumerable languages
(hence of the power of Turing Machines (resp. of type-0 Chomsky- grammars)) are
obtained. On the basis of the proofs of these results, in Section 5 we infer the existence
of universal (hence programmable) H systems. We close the paper with some discussions
- about the significance of the results obtained. .

" All proofs are supplemented with informal discussions about the idea behind the
formal construction, and about the biological assumptions and restrictions, yet without
entering into feasibility and efficiency details. Thus, the paper is addressed more to
computer scientists than to molecular biologists; as we have said above, first we are
interested in theoretical models of computabzlzty and only then in their implementation
in the form of computers. : -

1.3. The Splicing Operatzon

The fundamental notion we investigate here is that of splzcmg We introduce it below,
starting from the operation of DNA recombination, whose formal model the splicing
operation is.

A word of warnmg biochemists use this term also for a quite different operation
‘on RNA sequences. The operation considered here corresponds to the cross-overing, as
used in genetic algorithms, but it is much less restrictive: we allow the cross-overing of
words of different length, in positions which may be different from one word to another
one (moreover, these positions are defined according to certain contexts). In theoretical
computer science (formal language theory) the term splicing is already well established,;
e.g., it is settled in this way in the Handbook of Formal Languages (Rozenberg and
Salomaa, 1997).

We do not repeat here all the details of the abstraction process which leads from the
actual DNA recombination to the formal operation of splicing. We only give the idea
of this development; for detalls the reader might consult Head (1987) or Head et al.
(1997).

As one knows, a DNA molecule is a complex molecule composed of four nu-
cleotides, adenyne, cytosine, guanine, and tymine, abbreviated by A, C, G T, respec-
tively. These four nucleotides are always present in pairs A-T and C-G (the so-called
Watson—Crick complementarity), hence the DNA molecule is in fact a double-stranded
structure. Thus, we may interpret a DNA molecule as a word over the alphabet consisting

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing) 73

of four two-level symbols:

A C G T
T G C A

DNA molecules are also characterized by their specific spatial arrangement, i.e., their
helicoidal structure, but this is not important for our approach, hence in the following
we interpret DNA sequences as linear words.

We consider two such words:

CCCCCTCGACCCCC =~ AAAAAGCGCAAAAA
GGGGGAGCTGGGGG TTTTTCGCGTTTTT

On DNA sequences there can act the so-called restriction enzymes, chemical com-
pounds able to recognize specific subsequences of DNA and to cut the DNA sequence
at that place. The behavior of enzymes (the pattern they recognize) is well known, there
are catalogs with such informations. For instance, the enzymes named Tan and SciNI
are characterized by the recogmtlon sequences

TCGA GCGC
AGCT CGCG

respectlvely Their effect on the two molecules above is that the molecules are cut into
the following four fragments

CCCCCT ~ CGACCCCC AAAAAG ~ CGCAAAAA
GGGGGAGC TGGGGG TTTTTCGC GTTTTT

- One can see that the first fragment and the last one fit together, as well as the second
and the third one; through ligation, two new molecules may arise:

CCCCCTCGCAAAAA AAAAAGCGACCCCC
" "GGGGGAGCGTTTTT ~TTTTTCGCTGGGGG

The ligation operation is performed by other enzymes, called ligases, which just “paste”
the matching ends of DNA sequences produced by the restriction enzymes.

The operation described above is called recombination, or cross-overing. The formal
model of it is the splicing operation, informally defined as follows. _

Consider an abstract alphabet V, and two words x, y composed of symbols of V.
The place where an enzyme E; can cut a word.can be described by a palr (uy, uz), of
words over V; such a pair is called a context. Assume that we have one more enzyme,
E,, characterized by the context (u3, u4). This means. that when a word contains the
subword uu3 (or usus), then E; (resp. E,) can cut that word between u) and u; (resp.
between u3 and u4). If the two enzymes produce matching ends of the cut words, then
we indicate this by putting the two contexts together, wntmg ((u;y, uz), (u3, u4)) This
means that a ligation can occur.

Let us be a little bit more specnﬁc and assume that the words x, y above can be cut
by the enzymes E|, Ej, i.e., x = xjujuzxz and y = yjususy,. The resulting fragments
are

Xjly, U2X2, YIU3, U4Y2.

Copyright © 2000 All Rights Reserved

74 v R. Freund, L. Kari, and Gh. Paun

Z1 Uy Uz T2
L L ! |
T | T T T |
| | | | !
yu 1 | | t
n U3 Ug Y2

Fig. 1. The splicing operation.

If immediate recombination (ligafion) is possible, then we can get any of the following.
four words: o ' ’

X|UilaXy, XiloUsyz, ~YiUiUsXa, YilU3Uay:.

‘The first and fourth words are identical with x and y again, but the second and third are
possibly new words. We keep them as the result of the operation and we call this operation
splicing. Specifically, we say that we have spliced x and y at the sites u u2, usus, respec-
tively, according to the splicing rule ((u,, uz), (u3, u4)), obtaining xju2usya, y|u3u2x2,
the words x, y are also called the terms of the splicing. ,

Figure 1 illustrates this operation. .

When passing from the natural DNA recombination to the formal splicing opera-
tion on words consisting of abstract symbols we, in fact, leave both DNA reality and
terminology, generalizing the operation from several points of view:

1. We consider words, not double-stranded sequences (also having a spatial struc-
ture). ‘

2. We work on arbitrary alphabets, not on the four-letter DNA alphabet.

3. The sites where the splicing is performed are identified by pairs of words on
which we place no length restriction.

4. We cut the words only once and as a result of the splicing we keep the two
possibly new words.

5. We ignore circular words.

However, these assumptions are not dramatically losing reality:

1. Due to the precise Watson—Crick complementarity, a single strand of a DNA
sequence uniquely identifies the double-stranded sequence, hence there is no
loss of information in point 1 above.

2. It is known that the symbols of any alphabet can be codified using two given
symbols in such a way that many properties are preserved (unique deciphering,
the place in the Chomsky hierarchy, etc.). In the DNA case we have four letters
at our disposal, hence enough for such an encoding.

3. The actual restriction enzymes have recognizing patterns of small length, in most
cases less than eight. From the proofs below, one can see that the longest context
(u, u') used in splicing rules is of total length seven, and most of the contexts
are of length two, three, or four. Again it seems that the generalization in the

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 5

- definition is harmless if we return to DNA with the specific constructions used
in the proofs.
4. If an enzyme can cut a DNA sequence in several places, then the action can take
- place nondeterministically in none, one, or in several places. However, we are
interested here in finding language-generating devices which start from given
words (axioms) and iteratively using given splicing rules produce all the words
of languages we are interested in. Thus, on one hand, several cuttings of the
same word are just iterations of a single-cutting operation; on the other hand, we
look for possible derivations of the words of the language, thus discarding all the
“wrong computations.” This is the usual style of formal language theory. More-
over, in the DNA framework; due to the huge parallelism and nondeterminism of
all processes taking place, we may assume that any possible operation actually
takes place; furthermore, by specific filtering procedures, we can squeeze out the
desired result from the output of a reaction, discarding the “garbage.”
‘5. We may ignore circular words, on the one hand, because we may assume that
- linear words exist and can be selected, on the other hand, because the results we
obtain can be generalized to languages containing both linear and circular words
ina stralghtforward manner. - : .

Besides these‘ generalizations, inthe constructions below we use several assumptions
of a theoretical nature, which are no longer looking so “innocent”; we discuss them when
introducing them. _

On the positive side, as our models are so abstract maybe they can be 1mp1emented
not only on DNA supports, but also on other (bio)chemical structures; such a possibility
has already been suggested in Adleman (1995).

14. Splicing Sysiems; Looking for Universality “

The splicing operation can be used as a basic tool for building a language-generating
mechanism.

The general framework we step in is formal language theory, whose main goal is
to characterize the correctness (well-formedness) of the phrases of a language over a
given vocabulary. As usual, we identify “vocabulary” with “alphabet” (a set of abstract
symbols, which might denote any linguistic or nonlinguistic reality) and “phrases” with _
“words” (sequences of the considered abstract symbols). Thus, a language is a set (ﬁmte
or not) of words composed of symbols from a given alphabet.

In order to identify the elemerits of a language one usually considers grammars,
finite devices able to generate the words of the language. Besides the alphabet on which
we work, a grammar should contain a set (possibly a singleton) of axioms, which are
words considered to be correct “by definition,” and a set of production rules, some
elementary actions/tools, by the use of which the words can be transformed, preserving
the well-formedness. Starting from axioms and iteratively applying the productions, a
grammar identifies a set of correct words (a language). We say that this is the language
generated by the grammar, ‘

Of course, of special interest is the case when the components of the grammar
especmlly the sets of axioms and of production rules, are finite.

The basic grammars investigated in formal language theory are the Chomsky

Copyright © 2000 All Rights Reserved

76 R. Freund, L. Kari, and Gh. Piun

grammars. They have the additional feature that besides the alphabet of the generated
language, they use an additional alphabet, of auxiliary symbols, only used in the pro-
cess of derivation. The work of the grammar is accepted only when the produced word
contains no such auxiliary symbol. This is why the auxiliary symbols are also called
nonterminals and those appearing in the generated language are called terminals. -

The unrestricted Chomsky grammars (the so-called type-0 grammars) characterize
the family of recursively enumerable languages, which is also known as the family of
languages recognized by Turing Machines.

, For short, Turing Machines are devices consisting of a finite memory, a read-write

head, and a potentially infinite tape; in each moment, the read—write head scans a cell
of the tape. According to the state of the memory, the read—write head can rewrite
the scanned symbol, can move one cell to the left or to the right. A sequence of such
elementary operations, with the machine starting in a special initial state and finishing
the work in a terminal state, is called a computation. Thus, a language can be associated
to a Turing Machine, consisting of all words x for which there is a computation where
starting with the word x on the tape, the machme goes from the initial state to a terminal
state.

A Turing Machine which, given a word x on its tape, can only go from the left to the
right on its tape, without modifying the scanned symbols, is called a finite automaton;
finite automata characterize the family of regular languages.

According to the Turing—Church thesis, Turing Machines are the most general level
of algorithmicity/calculability: any conceivable type of algorithms can be simulated by
a Turing Machine (hence by a type-0 Chomsky grammar). In this paper we take the
type-0 Chomsky grammars as the standard model of computability.

From the opposite viewpoint, the most restricted class of Chomsky grammars are
the so-called regular ones, which generate the family of regular languages (which are
also characterized by finite automata). Finite automata and Turing Machines are, in some
sense, the two poles of computability and they play an essential role in the subsequent
sections.

We return to the splicing operation. Having such an operation, we can design a
language-generating mechanism in the usual way: take an alphabet, take a set of words
over this alphabet (axioms), and take a set of splicing rules. Starting from the axioms, by
iterated splicings we get a set of words. The mechanism described is a splicing system,
the set of the words produced is the language generated by it. Following the model of

'Chomsky grammars (and of other well-known mechanisms in formal language theory,
such as the Lindenmayer systems, see, e.g., Rozenberg and Salomaa (1980), (1997)), we
can also consider auxiliary symbols, which can be used during the derivation process,
but are not allowed to appear in the words produced. In this way we obtain the notion of
an extended splicing system; the basic model is then called nonextended. The extended
splicing systems (also called extended H systems) are the main subject of this paper:
How powerful are they? Can they reach the power of Turing Machines? Under which
conditions? .

The extended splicing systems were exp11c1tly mtroduced in P#un et al. (1996), but
variants of them, in general nonextended, were much investigated in the last years.

In general, the H systems, extended or not, turned out to be very powerful generative

" mechanisms. Several characterizations of recursively enumerable languages in terms of

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 77

various types of H systems were obtained in Piun (1996a) and Piun et al. (1996). Related
results appeared in Yokomori and Kobayaski (1995), while Denninghoff and Gatterdam
(1989) encoded the range of Turing Machines using iterated splicing on multisets (sets
with multiplicities associated to their elements). :

We improve these results here by obtaining the strongest charactenzatlon of recur-
sively enumerable languages possible in this framework, i.e., the family of recursively
enumerable languages is generated by H systems using finite sets of axioms and finite
sets of splicing rules, supplemented with a certain control mechanism. Such a control
mechanism consists of keeping track of the multiplicities of words (the number of avail-
able copies of a word at each moment), respectively of checkmg the presence of cercam
symbols in the words to be spliced.

This is the strongest result that can be obtained since, as was shown in Culik and
Harju (1991) and Pixton (1995), if no control is used, then the H systems using finite
sets of axioms and finite sets of rules only generate the family of regular languages. Our
results can be reformulated by saying that the computational power of H systems of the
types mentioned (using multisets or controlled splicing) equals the computational power
of Turing Machines (resp. of type-0 Chomsky grammars). This is rather unexpected,
taking into account that the nature of the splicing operation is quite different from the
nature of the operations involved in the work of a Turing Machine or of a Chomsky
grammar.

In formal language theory there are many characterizations of recursively enumer-
able languages. Usually, a class of mechanisms can lead to such a characterization if
these mechanisms have (1) context sensing capabilities and (2) erasing capabilities. By
the definition of the splicing operation, we have both these features introduced from
the very beginning into H systems. The results in Culik and Harju (1991) and Pixton
(1995) prove that they are not sufficient. One explanation is the fact that context sensing
acts only locally, we cannot transmit information from a part of a word to another one.

In our proofs we enlarge the context sensing capabilities. Basically, we introduce some
possibilities to sense contexts at distance. The modifications look weak, but they turn

‘out to fill in the missing strength: extended H systems with long distance context sensing
(under the form of certain regulations for using the splicing rules) are computationally
complete, they characterize the recursively enumerable languages.

However, this does not immediately imply that such systems can be used as com-
puters. If for every problem (identified here by a language) we have to build a specific
computer (identified here by an H system), then we do not obtain very much. We need
universal H systems, in the sense already introduced by Turing (1936).

A Turing Machine, TM,, is universal if all its components are fixed and given a
specific Turing Machine TM, we can run TM, as a program on TM,, in the followmg
sense. Assume that starting from a word w, the machine TM, produces a word w'.
There is a word wy, the code of TMj, such that starting from wow the machine TM,
produces the word w’, and this is true for all pairs (w, w'), having wy fixed. Thus, wp
is the “program” of the algorithm described by TMy; receiving it, as well as some input
data w, TM, behaves exactly as TM;, when working on the same data. Similarity with
the actual computers is apparent. Turing (1936) already proved that there are universal
Turing Machines. The notion of universality can be extended to any type of language
generating (or computing) devices, in particular to type-0 Chomsky grammars (but, of

Copyright © 2000 All Rights Reserved

78 _ R. Freund, L. Kari, and Gh. Paun

course, not for all classes of mechamsms are there universal mechanisms inside the
class). : :
For H systems it is both surprising and promising from a “practical” pomt of view

to show that universal H systems exist.-As suggested above, by a universal H system

we mean a system with fixed sets of auxiliary symbols, of axioms, and of splicing rules

that can behave like any given H system y if we add an encoding of y as an additional

axiom to the universal system. We prove the existence of such a universal H system with .
multiplicities (resp. with checking the occurrence of certain subwords).

The interpretation of these results, from the point of view of genetic/molecular
computing is that, theoretically, there exist programmable universal DNA computers
which are based on the splicing operation. The only operations used in these “computers”
are the iterated splicing (the splicing known from DNA recombination) and the squeezing
operation of selecting only the produced words which contain no auxiliary symbol (in
formal language terms, this amounts to the intersection with a regular set of the form
T*, with T a given alphabet; from biochemical point of view, this is a filtering procedure
of a kind already used in laboratory—see, for instance, Adleman (1994) and Hunter
(1993)). Therefore, for the case of using the splicing operation as a basic operation on
DNA sequences, we (afﬁrmatwely) answer the problems formulated in Adleman (1994)
and Gifford (1994).

In an optimistic way, one can'think of an analogy between these results and the
existence of universal Turing Machines proved in Turing (1936), which has laid the
theoretical foundation for the design of electronic computers. However, we stress the
theoretical character of our results. We only prove that DNA computers, programmable
and universal, are mathematically possible. Will they become “personal computers” in,
say, 50 years, as happened with electronic computers? Maybe yes, maybe no. Anyway,
here we do not discuss the feasibility of actually building such computers; as this problem
~ goes far beyond mathematics, stepping into practical DNA engineering.

2. Extended H Systems

In this section we formally introduce the notion which is fundamental to our study, i.e.,
that of an extended H system. First, we fix some formal language theory notations and
terminology, then we define the extended H systems, we exemplify the definition, and
we recall some previous results about the power of H systems. :

2.1. Formal Language Theory Prerequtsttes

An alphabet is a finite and nonempty set of abstract symbols Having an alphabet V, by
V* we denote the set of all words over V, including the empty one denoted by A. The
set of nonempty words over V, i.e., V* — {A}, is denoted by V*. The length of a word
x € V* (the total number of symbol occurrences in x) is denoted by |x|. :
A Chomsky grammar is a quadruple G = (N, T, §, P), where Nand T are dns_lomt
“alphabets, § € N, and P is a finite set of pairs (4, v),u,v € (N UT)*, such that u
contains at least oné symbol from N. ' '
The eleménts of N are called nonterminal symbols (they are used in the process of

Copyright © 2000 All Rights Reserved

DNA Cbmputing Based on Splicing -1

generating the language associated to G but are not allowed to appear in the words of this
language), those of T are called terminal symbols (the generated language consists of
words over this alphabet), S is the axiom, and the pairs (#, v) of P are called production
rules (or simply productions, or rules) and are written in the form u — v. This suggests
the way they are used: u can be replaced (one also says rewritten) by v. Formally, for
x,y € (N UT)* we write '

xX=y ifand only if x =xjux;, y=xvx;, forsome u —> veP.

We say that x directly derives'y according to the rule ¥ — v in P. By =* we denote
the reflexive and transitive closure of the relation = (thus, =* indicates zero or more
direct derivation steps). Then the language generated by G is

LG)={weT*|S="w)

In what follows we do not consider the empty word, because it has no biological
representation, and, moreover, the definitions can be given in a shorter way. Thus, we
conS|der two languages identical if they dlffer by at most the empty word: L| L, if

—{(A}=L,—{1}.

* The family of languages generated by arbitrary Chomsky grammars is the family of
recursively enumerable languages; we denote it by RE.

A grammar as above, with no restriction on the form of its rules, is said to be of type
0. If all rules are of the form ¥ — v with |u| < |v|, then G is called monotone (of type
1, or context-sensitive). The grammar G is called context-free (of type 2) if all rules are
of the form A > x for some A € N.If all rules in a Chomsky grammar are of the forms

X—>a¥Y, X-oa, for XYeN aeT

then the grammar is called regular (or of type 3).

By REG, CF, CS we denote the families of regular, context-free, and context-sensmve
languages, respectively, which are generated by the corresponding types of Chomsky
grammars. By FIN we denote the family of finite languages. The following inclusions

FINCREGCCFCCSCRE

are known as the Chomsky hlerarchy and this is the usual reference for estlmatmg the
generative power of any newly introduced generative mechanisms.

As we have mentioned in Section 1.4, RE is also characterized by Turmg machmes
and REG is also characterized by finite automata.

For general formal language theory prerequisites we refer to Harrison (1978),
Salomaa (1973), and Rozenberg and Salomaa (1997). A friendly introduction to for-
mal language theory for biologists can be also found in Searls (1993).

We only mention here the so-called Kuroda normal form, which is used below
several times.

Lemmal. Foreach type-0 Chomsky grammar G there isa grammarG’' = (N, T, S, P)
such that L(G) = L(G') and P contains only rules of the following forms:

1. A->a,forAeN,aceT,

Copyright © 2000 All Rights Reserved

80 : ~ R.Freund, L. Kari, and Gh. Pdun

2. A-> BC,forA;B,C €N,
3.A> MforAeN,
4. AB—> CD,forA,B,C,DeN.

2.2. Extended H Systems and Their Languages

As we want to work in a general framework, making possible, for instance, the use of
arbitrary sets of splicing rules, we encode the splicing rules not as quadruples ((u1, u2),
(u3, uz)) as above, but as strings, using the new symbols #, $ as separators instead of
((uy, uz), (us, ug)) we write ul#u2$u3#u4 '

- Definition 1. An extended H system is a quadruple
y=(V,T,AR),

where V is an alphabet, T € V, A € V*, and R C V*#V*$V*#V*; #, § are special
symbols notin V.

V is the alphabet of y, T is the terminal alphabet, A is the set of axioms, and Ris
the set of splicing rules; the symbols in T are called terminals and those in V — T are’
called nonterminals. :

' Forx,y,z,w € V* and r = u #u,$usi#u, in R we deﬁne

. (x, y) Fr (z, w) if and:only if x = X{UiUaXxz, Y = yu3lUayz, and
= X\UUsY2, W = YiU3UzX2,
for some xi,x2, y1,y2 € V*.

The words x, y are called the terms of the splicing. When r is understood, we write
I instead of I,. Note that in splicing rules u#u,$us#us we can have empty words
U1, Uy, U3, ug; for instance, a rule a#b$c# (with uy = A) says that the first term of the
splicing can be cut between a and b and the second one can be cut after ¢ without any
restriction concerning the symbols which follow. Of course, we never use splicing rules
with both u;, u; or both us, us empty.

Definition 2. For an H system y = (V, T, A, R) and for any language L € V*, we
write '

o(lL) = {z€V+|(x ., (z,w)or(x Yk, (w 2), forsomex yeL reR}

and we define §

o*(L) = Ua"(L),

i>0
where .

(L) =
ot (L) =o' (L)Va(o' (L)), for i>0.

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 81
The language generated by the H system y is defined by

L(y) =c*(A)NT*,
"I'hen, for two families of languages, F, Fz, we denote ;

EHF\,F)={L(y) |y =(V,T,A,R),A € Fl,R.e F}.

Thus, o' (L) is the set of strings obtained by splicing words in L accordmg to spllcmg
rules in R. Iterating the splicing, we get o*(L), which can also be defined as the closure
of L under splicing with respect to rules in R, or, equivalently, as the smallest language
containing L and stable under splicing with respect to rules in R.

The language L(y) consists of all words which can be obtained from the axioms in
A (including these axioms), by using arbitrarily many splicing operanons provnded that
no symbol outside T is still present in the word produced.

An Hsystemy = (V, T, A, R) with A € F|, R € F,, for F,, F, being two given
families of languages, is said to be of type (Fi, F). (Note that R is a language, hence
the definition makes sense.)

In the notion EH(F), F>), EH stands for “‘extended H” systems A system as above
having V = T is called nonextended (all words are terminal, hence L(y) = a*(A))
We do not discuss nonextended H systems in this paper, but incidentally they appear
in certain proofs, hence we only specify that by H(F}, F;) we denote the famlly of
languages generated by nonextended H systems of type (Fy, F2).

Remark 1. It is worth noting that the intersection with 7t, which is essential for defin-
ing the language generated by an extended H system, can already be realized practically.
This is exactly the way the description of the Hamiltonian path is selected in Adleman
(1994). (In fact, the practical procedure consists of removing from the test tube all the
sequences containing a given subword, after the removing of all sequences containing
an auxiliary symbol, codified in a specific way, what remains in the test tube is exactly
the set of words over T, hence the desired intersection with 7'+.)

Remark 2. From a mathematical point of view, for a splicing rule r = u#us$us#uy
it is enough to define the ternary relation (x, y) b, z, for x = = XU U2X2, Y = YIU3U4Y2,
and z = xju usy,. Considering also the word w = Yiusuzx, amounts to considering
the symmetric rule us#us$u #u;, too. This is the style of many papers on splicing. Here
we work in the restricted set-up of Definition 1 for “practical” reasons, in order not to
introduce unnecessary assumptions which cannot be met in practice. On the other hand,
a reflexivity assumption should also be considered: together with r = u#u,$us#u,, also
the rules u;#us$u #u; and us#us$us#tu, are implicitly present (the restriction enzyme
defining the cut at u;#u; acts on this site irrespective of whether or not some other word
containing the site us#u4 is present; moreover, there might also be a ligase recombining
the two ends u; and u;). We do not consider these additional rules in our constructions,
but in remarks placed after the main proofs we check whether they would modlfy the
generated languages .

Copyright © 2000 All Rights Reserved

82 .) R. Freund, L. Kari, and Gh. Piun

Uy Uy

Us U4
Fig. 2. Tabular view of a splicing rule.’

2.3. Examples

~ For the reader not accustomed with the splicing operation it might be difficult to “feel”
the way an H system works, Hence it might be of some help to see a splicing rule
ui#u,Susttuy as in Figure 2, which remembers the way the splicing operation proceeds
(see also Figure 1)..) ,

_ In order to increase readability, the place where the cutting of the splicing terms is
done is specified below by a vertical bar: ‘

(xyuyluzxz, yiusluayr) B (1 usys, yiusuzxs).

Figure 3 illustrates the way of building the output words using parts of the input words.

Bearing in mind these representations, we examine some examples.
The first one is very simple: consider the extended H system .

v = ({a, b, ¢}, {a}, {a"b, ca™)}, {a#bScha)),

where n, m are two given positive integers. The only splvici‘ng_rule, a#bSc#a, can be
- applied to the two existing axioms, a"b, ca™, and we get

(@b, cla™) + (@"*™, cb).

None of the words obtained can enter new splicings. Therefore, for A = {a"b, ca™}, we
have

o%(A) = {a"b, ca™},
o'(A) = a%(A) U {a"*™, cb},
o'(A)=0'(A), =2,
therefore |
o*(A) = 6°(A) Ua!(A) = {a"b, ca™, a"™™, cb)
‘and . '

L(n) ={a"*"}.

(21 w [ws 2], [1n_us [w92 |

Fig. 3. Building the output of a splicing operation.

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing)) .] 83

The extended H system y; in some sense “computes” the addition of the mtegers n
and m. :
Note that we can consider a simpler splicing rule,

¥l = (la, b, c}, la}, {a"b, ca™}, {#bScH)),
and the generated language is the: same:
(a"lb, cla™) - (@™*™, cb),

(a"|b, c|b) + (a"b, cb),
(clb, c|la™) F (ca™, cb).

Thus, the new splicings where the word cb is involved produce no new word, hence
a*(A) =0%A)Uo!(A) Uo?(A) = {a"b, ca™, a™*™, cb},
hence L(y1) = L(y{) = {a"*"}.

Now consider a more complex H system (1t 1s, infact,a reformulatlon of an example
in Mateescu et al. (1995)); take

v = ({a, b,c}, {a, b, c}, {abac'a‘, acaba), R),
with R containing the two splicing rules
- ry = b#H$b#, . r. = c#$c#. '
For instance, we can perform

(abacla, aclaba) \-,_ (abacaba, aca), ‘
(abacabl|a, ablaca) V-, (abacabaca; aba),

or, in general, forn > 1,

((abac)"|a, aclaba) |-, ((abac)"aba, aca),
((abac)"abla, ablaca) I, ((ach)"""a, aba).

In a similar way,

((acab)”|a, ablaca) -, ((acab)"aca, aba),
((acab)"acla, aclaba) t-,, ((acab)**'a, aca).
Therefore,
{abac}*{a} U {abac}*{aba} U {acab}*{a} U {acab} {aca} C L(y»).

(The extension plays no role in this case, y; is of the form (T,T,A,R), hence itisa
nonextended system.)

The reader can also verify that the converse inclusion holds (hint: when splicing
two words of one of the forms (abac)"a, (acab)”a—initially we have n = 1—or of the

Copyright © 2000 All Rights Reserved

84 R. Freund, L. Kari, and Gh. Pdun

‘forms (abac)"aba, (acab)"aca, we identify either a subword aba or a subword aca of
them, hence the words obtained are of the same forms).

Now we consider a still more complex example, namely, an extended H system of
type (FIN, REG) generating the language {a* | i > 0} (one can say that this H system
computes the power of 2). Besides the aim of familiarizing the reader with the way the
splicing operation and the H systems work, this example also involves an idea used in
the constructions in Section 4, '

Consider the system

ys = (V,{a}, A, R),
with

V={X,X,Y,Y,Y" B,a},
A = {XBaY, X'aY’, X'Y"},

and R containing the following groups of rules:

1. Xa"Ba™#aY$X'a#Y’, for n,m=>0,
2. X'a*#Y$X#a"Ba™Y', for n,m=>0,
3. X'a"Ba™#Y'$X#Y, for n,m=>0,
4. X#Y$X'#a" Ba™Y, for n,m=>0,
5. Xa"#BY$X'#Y", for n>1,

6. X'B#Y$X#a"Y", for n=>1,

7. X'Ba"#Y"$X#Y, for n>1,

8. #XY$X B#a"Y, for n>1,

9. a"#YSXY#, for n>1.

Here is the way of producing the word a*:

(XBlaY, X'a|lY') b (XBY', X'a®Y),
(X'a|Y, X|BY') b, (X'a*BY’, XY),
(X'a*B|Y’, X|Y) b3 (X'a®BY, XY'),
(X|Y, X'|la®BY) k4 (Xa’BY, X'Y),
(Xa®|BY, X'|Y") s (Xa*Y", X'BY),
(X'B|Y, X|a®Y") \¢ (X' Ba*Y", XY),
(X'Ba®|Y”, X|Y) \7 (X'Ba*Y, XY"),
(X|Y, X'|Ba®Y) b4 (X Ba®Y, X'Y),
(XBalaY, X'a|Y") k) (XBaY', X'a*Y),
(X'a%|Y, X|BaY’) b, (X'a®BaY’, XY),
(X'a’BalY’, X|Y) b3 (X'a®BaY, XY"),

" (X|Y, X'|a*BaY) 4 (Xa’BaY, X'Y),

_ (Xa®BlaY, X'a|Y') - (Xa*BY', X'a’Y),
(X'a?|Y, X|a*BY') b, (X'a*BY’, XY),

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 85

(X'a*B|Y’, X|Y) b3 (X'a*BY, XY'),
(X|Y, X'|a*BY) 4 (Xa*BY, X'Y),
(Xa*|BY, X'|Y") ks (Xa*Y”, X'BY),
. (X'BJY, X|a*Y") ¢ (X'Ba*Y”, XY),
(X'Ba*|Y”, X|Y) -, (X'Ba*Y, XY"),
(X|Y, X'|Ba*Y) k4 (XBa'Y, X'Y), ,
(XY, XBla*Y) g (a*Y, XBXY), = . . .
@y, X)) ko (@*, XYY). B

One sees how rules in groups 14 cut a symbol a from the right-hand end of a word
of the form Xa"Ba™Y,n > 0, m > 1, and add a? to the left-hand word a". The pairs of
nonterminals (X, Y), (X, Y"), (X', Y), (X', Y") control these operations precisely. In a
similar way, rules in groups 5-7 and 4 cut a symbol B from words of the form Xa" BY and
move it to the left-hand end, producing the word X Ba"Y. The process can be iterated.
Between a moving of B from the right-hand end to the left-hand end and another moving
of B, all occurrences of a are doubled. The symbol B can be removed only in the presence
of both X and Y, namely, from words of the form X Ba"Y . This ensures the fact that n is
of the form 2/. Then Y can also be removed. (If Y is removed before removing B, then
B can never be removed.) All rules in groups 1-7 can be used only in the presence of
both X and Y, or of their primed variants.

Using these remarks, the reader can prove not only the rather easy inclusion {a?" |
n > 0} € L(y3), but also the converse.

2.4. ' The Power of Extended H Systems

For the readers’ convenience and as a reference framework for our study here we recall

some known results on the generative power of extended H systems.
Spec1ﬁcally, the results in Table 1 hold, where at the intersection of the row marked

with a family F, with the column marked with a family F, we have indicated the corre-
sponding family EH(F, F7). The most important results in this table are the equalities:

1. EH(FIN, FIN) = REG,
2. EH(FIN, REG) =

Using a finite set of splicing rules and a finite (or reguiar) set of axioms l‘eads to
regular languages only. The inclusion EH(FIN, FIN) € REG was first proved in Culik
and Harju (1991); Pixton (1996) givesa snmpler proof, whereas Pixton (1995) and Head

Table 1. The size of famlhes EH(F|, Fz)

FIN REG CF cs RE

FIN REG RE RE RE RE
REG -~ REG RE RE RE RE
CF . CF RE. . RE . RE . RE .
Ccs RE RE RE RE RE
RE RE RE RE RE RE

Copyright © 2000 All Rights Reserved

86 - i R. Freund, L. Kari, and Gh: Piun

et al. (1997) contain a general result in terms of abstract families of languages, which
also implies the inclusion above. The opposite inclusion is proved in P4un etal. (1996). It
is worth noting that using a finite set of splicing rules also preserves the context-freeness.
(The inclusion EH(CF, FIN) € CF is proved in Pixton (1995).) '

However, if we make the step from finite sets of rules to regular sets, then we
spectacularly jump to the full power of Turing Machines/type-0 Chomsky grammars.
The inclusion RE € EH(FIN, REG) is proved in Piun (1996b), the opposite one follows
from the Turing—Church thesis.

The proof in’ P4un (1996b) makes essential use of the fact that we are allowed to
use an infinite set of splicing rules, a feature which makes the result of less interest from
a practical point of view. We cannot handle an infinite set of splicing rules (hence with
arbitrarily long splicing sites), even when this set is described by a regular language.
However, according to the results mentioned in Culik and Harju (1991) and Pixton
(1995), finite sets of rules can only cover the competence of finite automata (resp. .of
regular grammars). In order to get a larger power, we have to supplement the model with
something else and this is suggested by the very proof in P&un (1996b): the splicing sites
are arbitrarily long just because they check the presence of certain symbols at the ends
of the spliced words. In the proofs in Section 4 we see how this is done, hence we do not
go into detail here.

.3. Computational Completeness Using Multisets

In this section we give one of the main results of the paper: if we are able to keep track
of the number of copies of the words used, then extended H systems can characterize
the recursively enumerable languages.

" In fact, what we need is to be able to keep track of the descendants of one axiom only,
which is initially present in one copy; after splicing it together with another axiom with
arbitrary nonzero multiplicity, we get two words whose multiplicity is known, namely,
equal to one; then these two distinguished words are spliced together, resulting in one
word of multiplicity one. The process is iterated, hence in any moment we should be
able to know exactly how many copies are present for one or two words only. All the
other words are supposed to be present in an arbitrary number of copies, large enough
for the needs of the splicing process. -

The mathematical framework for such operations with sets whose elements appear
in a specified number of copies is the theory of multisets. In the next subsection we fix

“some notation and terminology and we define the extended H systems with multiplicities
(shortly, extended mH systems). In Sectlon 3. 2 we prove that extended mH systems
characterize RE

3.1. Multisets and mH Systems

In the definition above of the splicing operation, after splicing two words x and yand
obtaining two words z and w, we may use x or y again as a term of a splicing, possibly
the second one being z or w, they are not “consumed” by splicing; also the new words are
supposed to appear in arbitrarily many copies. Probably more realistic is the assumption

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 87

that at least part of the words are available in a limited number of copies. This leads us
to consider multisets, i.e., sets with multiplicities associated to their elements.

In the style of Eilenberg (1974), a multiset over a set X is a function M: X — _
N U {oo}; M(x) is the number of copies of x € X in the multiset M. The set{we X |
M(w) > O} is called the support of M and is denoted by supp(M). A usual set S C X
is interpreted as the multiset defined by S(x) = 1 forx € §, and S(x) = Oforx ¢ S.

- Fortwo multisets M, M, over X we define their union by (M;UM,)(x) = M,(x)+
M;(x), and their difference by (M — M)(x) = M,(x) — M(x), x € X, provided
M;(x) > M,(x) forall x' € X. Usually, a multiset with finite support, M, is presented
as a set of pairs (x, M (x)), for x € supp(M). ,

For instance, M, = {(ab, 3), (abb, 1), (aa, 00)} i isa multiset over {a, b}* with the
support consisting of three words, ab, abb, aa; the first one appears in three copies, the
second one appears in only one copy, whereas aa appears in arbitrarily many copies. If
we also take M, = {(ab, 1), (abb, 1), (aa, 17)}, then the difference M; — M, is defined
and is equal to {(ab, 2), (aa, oo)}

Definition 3. An extended mH system is a quadruple
=(V,T,A, R),

where V, T, R are as in an extended H system (Deﬁmtlon 1), and A is a multiset
over V+.
For such an mH system and two multisets My, M, over V+ we define

M=, M, iff therearex,y,z, we V*such that
@ Mx)=1, M —-{x,Dhy =1,
() x =xjuiuzxy, y = y\ususys,
Z=X1U1UsY2, W = Y{U3U2X?,
for x1,x2, y1, 2 € V*, ui#urSusttuy € R

@iii) * Mz = (((M; — {(x, DD — {(r, DD U{(z, DD U {(w, D).

At point (iii) we have operations with multisets. The writing above is also meant to cover
the case when x =y (then we must have M;(x) > 2 and we must subtract 2 from
M\ (x)) or z = w (then we must add 2 to M(2)).

The language generated by an extended mH system y is

L(y)={w e T* | w € supp(M) for some M such that A = M},

where =7 is the reflexive and transitive closure of =,.
- For two families of languages, F;, F, by EH(mF,, F;) we denote the family of
languages L(y)fory = (V, T, A, R)being an extended mH system with supp(A) € Fy,

R e F,.

In plain words, when passing from a multiset M; to a multiset Mz, accordingto y, the
multiplicity of two elements of M, x and y, is diminished by one, then the multiplicity

Copyright © 2000 All Rights Reserved

88 R. Freund, L. Kari, and Gh. Piun

of the resulting words, z and w, is augmented by one. The multiplicity of all the other
elements in supp(M,) is not changed. The multiset obtained is M;. ,

The language generated by y consists of all words containing only terminal symbols
and whose multiplicity is at least once greater than one during the work of y (all the
words which can be reached from the axioms by iterated splicings, using the “bounded
resources” of the mH system). :

An extended H system as in Definition 1 can be interpreted as an extended mH sys-
tem working with multisets of the form M (x) = oo for all x such that M(x) 5 0. Such
multisets are called w-multisets; hence in literature the corresponding H systems are also
called wH systems and the corresponding families are also denoted by EH(wF), Fy).
Observe that according to the deﬁnmons given above, for arbitrary Fj, F2 we have
EH(wF;, Fg) = EH(Fl, Fz)

An mH system y = (V,T, A, R) thh V= T is cal]ed nonextended; the family
of languages generated by such systems, corresponding to EH(mFy, F2), is denoted by
H(mF,, F;). The family of languages generated by mH systems y = (V, T, A, R) with
card(supp(A)) < k, for a given k, and R € F; is denoted by EH (m[k], F>). In a similar
way, we denote the family of languages generated by extended H systems with at most
k axioms by EH([k], F>) . Again observe that EH(wl[k], F2) = EH([K], F2).

Remark 3. We want to emphasize an important point, whose mlsunderstandmg can
cause wrong interpretations of the model. According to the style of Eilenberg (1974),
we write M(x) = oo for a word which is present in the multiset M in an unbounded
number of copies: This however does not mean that we actually dispose of infinitely
many copies of that word x. This only means that if at any moment of the work of y we’
need one further copy of x, then we can have it. In the DNA framework, this means that
if we need further copies of a given sequence, then we can produce them, for instance,
devising amplifications via the so-called PCR (polymerase chain reaction) techniques,
see, e.g., Hunter (1993) and Li and Graur (1991).

This remark essentially applies to the constructions in the following subsection. We
shall return to this important point after presenting those constructions.

3.2. Computattonal Completeness of mH Systems

This subsection is devoted to the proof of the followmg Tesult (statmg the computatlonal
completeness of extended mH systems)

Theorem 1. REG = EH(m[1], FIN) C EH(m[2], FIN) = EH(mFy, ;) = RE, for all
families Fy, F, such that FIN € F| CRE, FIN C F; C RE.

To stress the significance of this result, we reformulate (part of) it in different terms:
every Turing Machine (resp. type-0 Chomaky grammar) can be simulated by an extended
mH system with a finite set of rules; two axioms are sufficient (and necessary: systems
with one axiom only generate regular languages).

We separate the proof of this theorem into four lemmas. The first one establishes
the most important (and most unexpected) of the relations stated above.

Copyright © 2000 All Rights Reserved

bNA Computing Based on Splicing 89
Lemma?2. RE C EH(mFIN), FIN).

Proof. ~ Consider a type-0 Chomsky grammar G = (N, T, §, P), with the rules in P of
the formu — vwithl < Ju| <2,0<|v] <2, u # v (for instance, we can take G
in Kuroda normal form; Lemma 1 guarantees that such a grammar exists). Also assume
that the rules in P are labeled in a one-to-one manner with elements of a set Lab; we
write r: u — v, for r being the label of u — v. By U we denote the set N U T and we
construct the extended mH system

y =(V,T,A,R),
where

V=NUTU{X), X5, Y, Z1, Zo} U (). [F] | € Lab),
the multiset A contains the word

wy = X fY Sx2 .
with the multiplicity A(wo) = 1, and the following words with infinite multiplicity:

=(rvirl, for riu—>veP,
wy = Z1aY Z,, for a€U,
w, = Z\YaZ,, for aeU,
w, =YY. o

The set R contains the following splicing rules:

1. 818 Y u#p B8(r)v#[r], for r:u—>veP, .
Bi,B2 e UU(Xy}, 81,8,€ UU{X},
2. Y#u[r]$(r)#va, for rru—>veP, acUU(X,)
3. 5]81Yd#ﬂ|ﬂ2$Z|dY#Zz, for aeU, ﬂ], ﬂz eUU {Xz}
B - 8,8 eUVX)),

4. #YaZ,$Z #aYPB, - for aelU, §eUU{X},
o ‘ B €U U(Xy}, ' ‘
S, SaY#B1PaBaSZ Ya#Z,, - for aeU, BeU, ,82 ﬂ3 E Uu {Xg},

‘ - §eUU({Xy},

6. S#aY Z,$Z #Yap, for ' aelU, 8§eUU[X,},

: A BeUU {le,
7. #YY$X§Y#w, for we {X Ju T{X2} U Tz{le U T3
8. #X2$Y3#. ‘

The idea behind this construction is the following. The rules in groups 1 and 2
simulate rules in P, but only in the presence of the symbol Y. The rules in groups 3 and
4 move the symbol Y to the right, the rules in groups 5 and 6 move the symbol Y to
the left. The “main axiom” is wy. All rules in groups 1-6 involve a word derived from

Copyright © 2000 All Rights Reserved

% o R. Freund, L. Kari, and Gh. Piun

wy and contain such a symbol Y introduced by this axiom, in the sense that they can

use only one axiom different from wo. In any moment, we have two occurrences of X

at the beginning of a word and two occurrences of X at the end of a word (maybe the
same word) The rules in groups 1, 3, and 5 separate words of the form X X2 3 into two
words X?z; and z,X3, each one with multiplicity one; the rules in groups 2, 4, and 6
bring together these words, leading to a word of the form X?%z'X2. The rules in groups 7
and 8 remove the auxiliary symbols X, X, Y. If the vemammg word is terminal, then
it is an element of L(G). The symbols (r), [r] are associated with labels in Lab, Z, and
Z, are associated with moving operations.

Using these explanations, the reader can easily verify that each derivation in G can
be simulated in y, hence we have L(G) € L(y). (An induction argument on the length
of the derivation can be used, but the details are straightforward and tedious; we avoid
such a strategy here. Moreover, the discussion below implicitly shows how to simulate
a terminal derivation in G by splicing operations in y.)

We consider in some detail the opposite inclusion. We claim that if A =}, M and
weTH, M(w) > 0,then w € L(G).

As we have pointed out above, by a direct check we can see that we cannot splice
two of the axioms w,, Wy, W), Wy (for instance, the symbols 8, B in rules in groups 4
and 6 prevent the splicing of w,, w}, @ € U). In the first step, we have to start with
wo, wo = X2Y SX2, A(wo) = 1. Now, assumie that we have a word X7w; Y w, X3 with
multiplicity one (wy is of this form). If w;, starts with the left-hand member of a rule
in P, then we can apply a rule of type 1 to it. Assume that this is the case, the word is
X2w;Yuw; X3 for some r: u — v € P. Using the axiom (r)v[r] from A we obtain

(X} Yulws X2, (rIlr]) F (X3w Yulr], (rvwsX3).

No rule from groups 1 and 3-8 can be applied to the words obtained. From group 2, the
rule Y#u[r]$(r)#va can be applied, involving both these words, which leads to

K Flulr], () owsX2) - (Xw YvwsX2, (ulr]),

where the word (r)u [r] can never enter a new splicing, because intherule 7: u — v

from P we have assumed # # v. The multiplicity of X2 w1 Yul[r]and (r)vws Xj 2 has been
reduced to zero again (hence these words are no longer available), the multrpllcrty of
X2w, Y vw; X3 is one. In this way, we have passed from X2w; Yuws X3 to X} wlew3X2,
both having the multiplicity one, which corresponds to using the rule 7: ¥ — v in P.
Moreover, we see that at each moment there is only one word containing X? and only
one word (maybe the same) containing X2 in the current multiset.

If to a word X?w, Yaws; X3 we apply a rule of type 3, then we get

(X2w Ya|ws X2, Z)aY|Zy) F (X3wi YaZ,, ZiaYwsX3).

No rule from groups 1-3 and.5-8 can be applied to the words obtamed By using a rule
from group 4 we obtain e .

(x? wllYalz,lean3X2) . (x 2uiaYwsX2, ZiYaZy).

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 91

- The first of the words obtained has replaced X?w; Yow; X2, which now has multiplicity
" zero (hence we have interchanged Y with «), the second one is an axiom.

In the same way, one can see that using a rule from group 5 must be followed by
using the corresponding rule of type 6, which results in interchanging ¥ with its left-hand
neighbour.

Consequently, in each moment we have a multiset with either one word X?w, ¥ w, X?
or two words X%z, z,X2, each one with multiplicity one. Only in the first case, prov1ded

= A, can we remove XY by using a rule from group 7; then we can also remove x32
by using the rule in group 8 This is the only way to remove these nonterminal symbols
If the word obtained is not terminal, then it cannot be processed any more, because it
does not contain the symbol Y. In conclusion, we can only simulate derivations in G and
move Y freely in the word of rriultiplicity one, hence L(y) € L(G). O

Remark 4. The proof above also remains valid when the reflexivity assumption in
Remark 2 is considered, which can be seen as follows: Rules of type u;#u;$u #u, for
rules from groups 1-6 and 8, and rules of type us#u4$us#u, for rules from groups 2, 4,
and 6-8 involve words whose multiplicities are at most one, hence these rules cannot be
applied. The remaining rules of these types are applied to axioms of infinite multiplicity
and what we obtain are always new copies of the axioms we used, because there is a
unique position where we can splice.

Remark 5. Let us estimate the number of copies necessary for each axiom. We have
said that A(wp) = 1 (and this is essential for the correctness of the simulation of G by
y above). For all w of type w,, w,, w,,, w, we have said that A(w) = oo. Actually, one
sees that for each r € P we need as many copies of w, for as many times rule r is used
in a derivation in G. Then w, and w;, are necessary for each operation of moving Y to
the left or to the right. The word w;, is used only once, by a rule of type 7, at the end of
the work of y. Thus, we might take A(w;) = 1, too. ,

Moreover, we have seen above that in each moment there are exactly one or exactly
two words whose multiplicity is controlled, namely equal to one. Thus, we do not have
to “count,” say, distinguishing between n and n + 1 copies of a given word, for large n.
It is enough to distinguish between zero and one, and that for at most two words; this

- distinction is made automatically, by the way the system above works, our only care is
to prevent making copies of these distinguished words.
_ This fact, plus the possibility of obtaining new copies of certain words, via PCR
techniques, makes the construction above realistic—from these points of view.

What is nonrealistic, maybe fatal for the practical feasibility of the model, are the

following two observations:

1. Having two words, each one with multiplicity one, and splicing them, is prac-
tically an event of probability equal to zero. Theoretically, the two words can
arrive close enough to each other in order to let a ligase paste them. How to
ensure this in a realistic interval of time (not to speak about an efficient time) is
another story. One can imagine ways of binding the two words to a solid support
(such techniques are relatively well understood, see, e.g., Zhang and Seeman

Copyright © 2000 All Rights Reserved

92 R. Freund, L. Kari, and Gh. P4un

- (1992)), in order to keep them closer and to-increase the probability of splicing,
but the extent to which such an operation is feasible and efficient is a matter of
bioengineering beyond the scope of this paper.

. 2. The construction above involves a large number of splicing rules of type 1 only
we have used

card(P)(card(NUT) +1)*

rules! A splicing rule means two restriction enzymes. (In fact, one enzime for
each rule of type 1 is sufficient: each splicing by a rule of type 1 uses an axiom
(r)v[r] and we can produce the fragments (r)v, [r] of these axioms in advance,
with sticky ends prepared as requested by the corresponding splicing rules. This
decreases by a factor of two the number of enzymes necessary during the work

~of y.) In general, each enzyme acts in specific temperature, salt concentration,
and other reaction conditions, hence it is rather difficult to use different enzymes
at the same time. In the work of ¥ above we never use the rules in parallel, hence
we do not actually need to use concomitantly more than two enzymes, those
corresponding to a rule. (Moreover, we may assume that we first cut a word by
one enzyme, then the other word by the second enzyme, and after that we recom-
bine the words obtained.) Thus, we may suppose that the reaction conditions are
changed from a step to another one as requested by the enzyme currently used.
This again makes the process theoretically and practically possible, but com-
pletely uninteresting as far as the efficiency is concerned: we cannot wait for the
result of the computing if we have to change the temperature of the test tube for
each splicing rule! (This reminds us of the way of computing in the framework of
the “programming language” imagined by Lipton (1995) and Adleman (1995),
by handlmg test tubes.)

Concerning the feasibility of the model, please also note that the longest splic-
ing site we used is of length seven, in rules of group 1 (15,6:YupB,| =17 when ju| =
2). In rules of groups 3, 5, and 7 we use sites of length six, each rule of groups 2, 4,
and 6 has a site of length four, whereas the rule of type 8 has the longest site of length
three. . ‘ '

Lemma 3. EH(mFIN, FIN) C EH(m[2], FIN).

Proof. Take an extended mH system y = (V, T, A, R), with finite supp(A). Let
wy, Wy, ..., W, be the words of supp(A) such that A(w;) < 00,0 < i < n, and let
Z15 ... 2m be the words in supp(A) with A(z;) = 00,0 < i < m. We construct the
extended mH system '

)’ =(VU{c,di,dy}, T, A", R),
where A’ contains the word

w= ‘(wIC)""”"(wzC)’“"’” co (wpe) A,

Copyright ©.2000 All Rights Reserved

DNA Computing Based on Splicing 93
with multiplicity one, and the word
z=djcz1c22¢ - - CZmeds,

with infinite multiplicity. If n = 0, then w does not appear, ifm=0,thenz = dlcdz
Moreover, .

R =RU {#c$d2# #d|$c#}

The word z can be used for cuttmg each w; and each z; from w and z, respectlvely
For instance, in order to obtain z; we splice z with z using #d,$c# for the occurrence of
c to the left hand of z;, that is, : :

(diczic - -+ zj_qclzjc - - - czmedy, |2) & (diczc--- CZ_,‘,—IICZ, ZiC -+ CImedy),
then we splice the second word with z again using #c$d,#, and we get
@jle...czmedy, z|) & (2, 2€Zj41 ... CZmedy).

Arbitrarily many words z; can be produced, because A'(z) =

In order to produce the words w;, 1 < i < n, we start from the left-hand end of
w, applying #c$d,# to w and z; we get w; and zc(w.c)’“"") Lwyc)A®D ... (w,c)Awa),
both with multiplicity one. Using the rule #d, $c# for z and the second word, we obtain zcz
and (w;c)A@0~! (wpc)AD ... (w,c)A®n), again both with multiplicity one: From the
first word we can separate axioms z;, 1 <. j < m, but this is not important, because these
axioms appear with infinite multiplicity in A. From the second word we can continue
as above, cutting again a prefix w;. In this way, exactly A(w,) copies of w; will be
produced; we can proceed in a similar way for the other axioms ws,, . .., w, in order to
obtain exactly the A(w;) copies of w;; i =2,...,n.

The use of the nonterminals c, dy, and d; guarantees that only the axioms of y with
multiplicity 0o can be generated in an arbitrary number of copies by the splicing rules
in R" — R, whereas for each axiom w; of y with finite multiplicity A(w;) we can only
obtain A(w;) copies of w;. If arule of R is used for splicing words of the form x,cx3, i.e.,
containing the nonterminal ¢, we will finally have to cut such a word by using the rules
in R’ — R in order to obtain a terminal word. As we start from the axioms of y, separated
by ¢, and with the correct multiplicities (guaranteed by the mode of constructing the
words w and z), this also corresponds to a correct sphcmg in y. Consequently, L(y') =
L(y). | , 0

Remark 6. If the reflexivity assumption. does not change the language generated by
¥, then this is also true for y’, because the additional rules imposed by reflexivity are

#C$#C, c#$c#, d2#$d2#, #d|$#d1.

The last two rules can be used only on unique places, hence they repl;oduce the terms of
the splicing. The first two rules can be used for splicing parts of w, parts of z, or parts of

Copyright © 2000 AII Rights Reserved

94 R. Freund, L. Kari, and Gh. Péun

w with parts of z, but this is always done without changing the subwords w;, 1 <i <n,
and z;, 1 < j < m, and without modifying the number of copies of each w;, 1 <i <n.

Lemmad. EH(m{1], FIN) C REG.

Proof. Take an extended mH system y = (V, T, A, R) with supp(A) = {w}. If
A(w) < oo, then L(y) obviously is a finite language (every word in L(y) has a length
not greater than |w) - A(w)).

If A(w) = oo, then L(y) € EH([1], FIN) € EH(FIN, FIN). In Culik and Harju
(1991) and Pixton (1995) it is proved that H(FIN, FIN) € REG. As REG is closed
under intersection and L(y) = L(y")N T+, fory’ = (V, 'V, {w}, R), we obtain L(y) €
REG. Hence we conclude EH(m [1), FIN) C REG. O

Lemma 5. REG C EH(wll1], FIN).

Proof. LetG = (N, T, S, P)be aregular Chomsky grammar,‘ that is, with all the rules
in P of the forms X — aor X — aY,for X,Y € N and a € T. Construct the wH
system

= (NUTU{E, F},T, A, R),
‘with]
A = {(SE, 00)}

U{(XaYE,00) | X > a¥Y € P,X,Y € N,a € T}
U{(XaF,0)|X >aeP,XeN,acT),

and R contains the following splicing rules:

1. #XE$X#aYE, for X—>a¥YeP, X, YeN, a€T,
2. #XE$X#aPF, for X—-)aeP XEN "aeT,
3. #F$XXFE#, for XeN.

* Starting with the axiom SE, we can simulate the derivations in G by using rules in
- the first group (and axioms XaYE), then a rule in the second group (and the corresponding
axiom XaF), and finally applying the rule of type 3. Indeed, the following splicings are
possible in y forall w € T* (the numbers below the denvatlon sign I indicate the group
the splicing rule we apply is taken from):

(i) (w|XE, X|aYE) (waYE,XXE), = for X-—>aY eP,
(i) (w|XE, XlaF) \; (wF, XXE), . for X—->ae€eP,
(iii) (w|F, XXE]) b3 (w, XXEF).

Therefore, L(G) € L(y).

Conversely, each word in A is nonterminal, and each rule in R involves words
containing occurrences of E and/or of F. Let us examine the result of splicing operations

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 95

different from the “legal” ones of the forms' (i)-(iii) above. This means that w ¢ T*,
hence the first term is one of XXE, XXEF obtained as above, or XaYE, XaF in A, or
other similar words obtained by splicing. We have

(X|XE, X|aYE) \) (XaYE, XXF), for X —>aYeP,
(X|XE, X|aF) V-, (XaF,XXE), for X —>acPP,
(X|XE, XXE|) 3 (X, XXEXE),

(X|XEF, X|aYE) -y (XaYE, XXEF), for X —>aY € P,
(X|XEF, X|aF) \-, (XaF, XXEF), for X —>ae€P,
(X|XEF, XXE|) 3 (X, XXEXEF).

We obtain words already considered, or axioms, or words never entering a splicing
(like X), or new words composed of X, E, F, Moreover,

(Xa|YE, Y|bZE) | (XabZE, YYE), = for- Y= bZ € P,
(Xa|YE, Y|bF) b, (XabF,YYE), for Y > beP.

Words XxZE, |x| > 2,x € T*, X, Z € N, can be used only as the first term for a
rule in group 1, but the leftmost X can never be removed, hence no terminal word can
be produced in this way. The same holds true for XxF, x € T+, X € N: the symbol F
can be removed by rule 3, but then X cannot be removed.

The remarks above apply to the new words XXEXE, XXEXEF, too in all cases we
obtain “legal” words (axioms), or old or new words composed of X, E, F, or words
starting with X and also containing terminals, but never turning to temiinal words.
Consequently, no terminal word outside L(G) can be produced, hence L(y) € L(G).
Therefore we conclude that L(G) = L(y).

Now, using the same construction as in the proof of Lemma 3, we can combine all

axioms from A with multiplicity oo into only one axxom z, hence we obtain REG <
EH(w [l] FIN), which completes the proof R a

~ We are now able to give a complete proof for Theorem 1 stated at the beginning of
this section, i.e.,

REG = EH(m[1], FIN) C EH(m[2] FIN) EH(mF|, R) =
for all families Fy, F> such that FIN C F|\ CRE,FINC F, C RE

Proof of Theorem 1. For the readers’ convenience, we recall the relations proved in the
four lemmas above: ‘ ‘ :

‘Lemma 2: RE € EH(mFIN, FIN), '
Lemma 3: EH(mFIN, FIN) € EH(m[2], FIN),
Lemma 4: EH(m[1], FIN) C REG,
Lemma 5: REG C EH(w[1], FIN).

Now, from the deﬁnitions we have

EHIK), F») € EH(mlk], F), k=1,
EH(wF,, F,) C EH(mF,, F»), i

Copyright © 2000 All Rights Reserved

96 R. Freund, L. Kari, and Gh. Piun

for all Fy, Fy. Thus, from Lemmas 4 and 5 we obtain
REG = EH(m[1), FIN).

Lemmas 2 and 3 imply
RE € EH(m[2], FIN).

The inclusions |
EH(m[2), FIN) € EH(mF,, Fy),

for all Fy, F, such that FIN € F, C.RE and FIN C F, C RE, hold by the definitions.
Because of the Turing—Church thesis we also have

EH(mF\, F;) C RE,
for all F|, F, C RE. Consequently,
RE = EH(m[2], FIN),

which completes the proof. . - m]

4. Computational Completeness by Checking Context Conditions '

The aim of this section is to prove that we can characterize the recursively enumerable
languages without also counting the copies of the words used as in the mH systems above,
but by restricting the use of the splicing rules: with each splicing rule we associate sets of
words; each rule can be applied for splicing two words only when (1) all the associated

words appear as subwords of the spliced words, or when (2) none of the associated words
appears in the spliced words. As we show below, each of these two variants of context
conditions allows us to define extended H systems which turn out to characterize the
family of recursively enumerable languages; in each case we only check the presence of
certain symbols in one of the spliced words.

In the following subsection we introduce the extended H systems with permitting
contexts and then we prove their computational completeness; in Section 4.3 we intro-
duce the extended H systems with forbidding contexts and prove their computational
completeness.

4.1. . Extended H Systems with Permzmng Contexts

From now on we deal with H systems as in Section 2, without multlphcltles assoc:ated
to words (wH systems, in the terminology of Section 3), but with the splicing regulated
by context conditions. We start with “positive” context conditions.

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing . ' . 97
Definition 4. An extended H system with permmmg confexts is a quadruple
= (V, T A R),

where V, T, A are as in Definition 1, and R is a set of triples (we call them rules with
permitting contexts) of the form

pP= (r; C|9 C?.)s

where r = u#u,$us#uy is a splicing rule over V and Cy, C; are finite subsets of v+,
To such a triple p we associate the word

p(p) = ul#u2$u3#u4@w|& vele &wk@vl& nee &v,,,;

where C; = {wy, ..., wx}, C2 = {v1,...,Un}, k,m > 0, and @, & are new special
symbols. We denote p(R) = {p(p) | p € R}.

For x, y,z,w € V* and p € R as above, we define (x, y) I, (z, w) if and only if
(x, y) Fr (z, w), every word contained in C, appears as a subword in x, and every word
contained in C, appears as a subword in y (of course, when C; = @ or C, = @, then this
imposes no restriction on the use of rule p).

The language generated by y is defined in the natural way, and the family of lan-
guages L(y), for y = (V, T, A, R) as above, with'A € F; and with p(R) € F,, is
denoted by EH(F;, pF;); instead of F; we put [k] when systems with at most k axioms
are used. The words over V in the sets C|, C; control the use of splicing rules in the
same way as permitting contexts in random context grammars and in semlcondmonal
grammars do (van derWalt, 1971; Dassow and P#un, 1989). :

Remark 7. The reason for considering the type of y defined above, using the language
p(R), is to avoid the possibility of introducing complex features in systems which can
be considered simple at a superficial sight. Examine, for instance, the following system:

= ({a, b, c}, {a, b}, {bac bb} R),

with R containing the rules

= (a#cSb#a; 0, 9),
Pao.n = (ba #c$bib; (b, c},), n>1, ne{2'|i>0}
P3n = (ba"#cSbi#b; (b}, (c)), n>1, n¢{2|i>0}

One can see that
L(y) = (ba*b | n > 1} U {bb}
(by rule p; we can produce all words ba™c, m > 1, whereas p,, replaces ¢ by b in such

words having m = 2"; rules p3 , can never be used). The language L(y) is not regular

Copyright © 2000 All Rights Reserved

98 R, Freund, L. Kari, and Gh. Piun

(in fact, it is not context-free) and this is direétly'due to rules of type p; .. However, if
we consider the type of ¥ according to the set of splicing rules only, then y is of type
(FIN, REG), which is misleading:

{a#c$b#a} U {ba"#c‘$b#b'| n>1l,n=2,i>0}
U {ba™#cSb#b |n > 1,n#2,i > 0}
= {a#c$b#a} U (ba"#c$b#b | n > 1} € REG.

The same result is obtained if we do not separate the éymbols in the conditions associated
- with rules p,, and ps »; specifically, we get the regular language

{a#cSb#a @} U {ba"#cb#b@bc | n > 1}.

4.2. The Power of Extended H Systems with Permitting Contexts

A result similar to Theorem 1 also holds for H systems with permitting contexts, with
the difference that the hierarchy on the number of axioms now collapses to a hierarchy
with one level only. Specifically, the following result holds.

Theorem 2. EH ([11, pFIN) = EH(F 1» PF2) = RE, for all famzhes Fy, Fz such that
FINCF, CRE,FINCF, CRE.

This subsection is devoted to proving this theorem. The following two lemmas are
. used to achieve this aim.

o

Lemma 6. RE € EH(FIN, pFIN).

Proof. Consider a type-0 Chomsky grammar G = (N, T, S, P) like in the proof of
Lemma 2, in the Kuroda normal form; let Lab denote the set of labels of the rules in P
and denote U’ = U U {B)}, U = N UT, for B being a new symbol. We now construct
the extended H system with permitting contexts

y =(V,T,A,R),
where

V NUTU(B,E,E,F,F,X,X,Y,ZYU{¥,|a € U'U Lab},
= (F'Z, XBSY, XZ, ZE, ZE', ZF, ZY)
U(ZY,, X'aZ | o € UYU{ZY,, XvZ | r: 4~ veP)

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing ’ _) 99
and R contains the following rules with permitting contexts:

@HuYSZ#Y,; (X}, 0), for rru-—->veP,
(X#$X'Vv#Z; (Y, }, 9), for r:u—>veP,
#Y, $Z#Y;{X'},0), - for r:u—>veP,
(X'#$X#Z; (Y}, 0), o :
#HaYSZH#Y,; (X}, 0), for a €U,
(X#SX'a#Z; (Yy), 9, for axel’,
#Y,$Z#Y,; (X'}, D), for el
(#YSZ#F; (X}, 0), ‘
(XB#$F'#Z; {F}, 9),

(#F$ZE#; {F'}, 0),

(F'#$#ZE' {F} 7).

mOYRNANA LN -

—

, The ldea behind t111s constructlon is the following. The rules from groups 14 allow
us to simulate rules from P on a suffix of the first term of the splicing. A rule in group
1 cuts the left-hand side u of the production 7: u — v € P from the right-hand end of
the word and the associated symbol ¥, memorizes the label of this rule; in the presence
of Y, a rule from group 2 will introduce the right-hand side v of the rule with label r on
the left-hand end of the word together with X’ instead of X; then Y, is again replaced by
Y (by using the appropriate rule from group 3), and X'i is agam replaced by X (by using
the rule from group 4). :

However, we must be able to smulate the apphcatlon of arule from P at an arbitrary
position of the underlying sentential form, not only at the right-hand end of the word.
To this aim, the rules in groups 5-7 and 4 allow us to “rotate” the word: a rule in group
5 cuts a symbol « from the right-hand end of the word, Y, memorizes this symbol, in
its presence a rule from group 6 will introduce « in the left-hand end (together with X),
then Y, is again replaced by Y (by using the appropriate rule from group 7), and X’ is
again replaced by X (by using the rule from group 4). Any circular permutation can be
obtained in this way.

In a quite similar way, the rules from groups 8-11 ﬁnally allow us to remove the
markers X and Y by first replacing Y by F and X by F’ and then by removing F and F'.

We now look in some detail at the way the ideas mentioned above work.

When simulating derivation steps in G, we start from XBSY, and at every step the
marker X and its variant X’ as well as Y and its variants Yg, B € U’ U Lab, are present
to indicate the ends of the word. Moreover, in each moment the symbol B tells us where
the beginning of the word whose permutation we consider is. !

All the splicing rules with permitting contexts contained in R require an occurrence
of the symbol Z in the second term of the splicing; in fact, these words are meant to be
taken from A. If we start with rule 1 applied to XBSY and ZvY, for some § -'v € P,
this starts the simulation of a derivation in G. In general, having a word Xx, Bx,uY ‘and
r: u — v € P, we can obtain Xvx; Bx,Y by using the associated rules in groups 1-4.
This corresponds to a derivation step xux; = *QUXx| 1n G. The correspondmg steps in
y have the following form

1. (XquY, Z|Y,)) b, (XwY,, ZuY), for’ p= (#u‘Y$Z#Y,;’{X}', ?),
wherer: u > v € P and w € U*{B)U*; ' :

Copyright © 2000 All Rights Reserved

100 R. Freund, L. Kari, and Gh. Piun

2. (X|wY,, X'v|Z) Fp (XZ, X'vwY,), for p=(X#$X'v#Z;{Y,},9),
wherer: u — v € P and w € U*{B}U*;

3. X'vwl|Y,, Z|Y) }p (X'vwY, ZY,), for p= #Y,$Z#Y; (X'},),
wherer: u — v € P and w € U*{B}U*; L

4. (X'wwY, X|Z) Fp (X'Z, XvwY), for p=(X'#$X#Z;{Y},0),
where r: u — v € P and w € U*{B}U*. S

As additional results (that cannot already be found in. the set of axioms A) of the
splicing derivations listed above we obtain the words

ZuY, for rru—>veP,

and also the word X'Z if v # A forallr: u > v € P. _

To each word XwaY, @ € U, w € U*{B}U* (resp. XwaY, @ = B, w € U*)
we can also apply the appropriate rule from group 5 and then proceed by applying the
appropriate rules from groups 6 and 7; finally, by using the rule in group 4 again, we
obtain the word XawY . The symbol & has been moved from the right-hand end to the
left-hand end of the word, which is exactly what we need for rotating the underlymg
sentential form:

1. XwlaY, Z|Y,) l—i (Xﬁ)Yd, ZaY), for (#aY$Z#Ya; {X},ﬂ),

whereax € U andw e U*B)U*ora = Bandw e U*;

2. X|wYe, X'a|Z) Fp (XZ, X'awY,), for (X#$X’a#Z {Y,}), 9),
whereaeUandweU‘{B}U*ora—BandweU* e

3. X'awlY,, ZIY) Fp (X'awY, ZY,), for = (#Y,$Z#Y; {X’} 2),

where ¢ € U and w € U*{B}U* ora = B and w e U%;
4. (X"|awY, X|Z) b, (X'Z, XawY), for © p=(X'#$X#Z; (Y}, 9),
where @ €:U and w € U*{B}U* ora¢ = B and w € U*..

As additional results (théf Cannot already be found in the sét of axioms A‘) of the
splicing derivations listed above we obtain the words

ZaY, for a€l’,

/

and, if vs Aforall r: u — v € P, then again X'Z too. .

Notice again that every word obtained from XBSY so far and not containing the
symbol Z is of the form a; x; Bx,ar2, with (),) being one of the pairs (X, Y), (X, Ys),
(X', Y.), (X', Y), @ € U'U Lab, hence these symbols appearing as permitting contexts
in the splicing rules of R control the work of y precisely.

In order to obtain a terminal word we have to use rules from groups 8-11, in this
order (¥ must be present when using rule 8); it is easy to see that in fact we have to start
with a word of the form X BwY with w € U*:

1. (Xw'lY; Z[F) Fp (Xw'F,Z2Y), for p= (#Y$Z#F; {X}, 9),
.where w’' € U*{B}U*;

2. (XB\wF, F'|Z)+, (XBZ, F'wF), for p=(XB#$F'#Z;{F},0),
where w € U*; B

Copyright © 2000 All Rights'Reserved

DNA Computing Based on Splicing ‘ ‘ 101

3. (F'w|F,ZE|) V-, (F'w, ZEF), for p= #FS$ZE#; (F'},9),
where w € U*;)

4. (F'lw, |ZE) V-, (F'ZE', w) for p= (F'#$#ZF'; (F'},0),
where w € U*. : ‘

As additional results (that cannot already be found in the set of axioms A) of the
splicing derivations listed above we obtain the words

XBZ, ZEF, F'ZE'.

In sum, in ¥ we can -produce every terminal word that can be produced by G, i.e.
L(y) 2 L(G).

Conversely, no parasitic termmal words can be generated in y, i.e., L(y) € L(G):

All the words generated in addition to the axioms represent a sentential form of a
derivation in G (maybe in a rotated version) or contain the symbol Z. Only the words
containing this symbol Z can be used as second terms of a splicing in y, and, except for
the word F’ZE’, all words that really can be used already appear in the set of axioms
A; with F’ZE’ we can also-do the following derivations involving words of the forms
F"'ZE' as well as F*w and F*wF, forl, k > 0: If k = 0, then we obtain w (resp. wF),
where the word w F cannot be processed any more, because the rule in group 10 needed
for eliminating the symbol F requires the occurrence of the symbol F'; if the word w

-obtained is not terminal, then no further step can be done. If k > 2, then we can only

obtain similar words like from F'wF . The words F "ZE’ for I > 1 can be used freely in
the same way as the word ZE' itself.

1. (F™|F*ZE', F"|ZE') -, (F™ZE', F' F*ZE'),
for p = (F'#$#ZF; {F'}, 9),
wherem,k,l >0andm +k > 1;
2. (F™|F*w, F"|ZE') \-, (F™ZE', F" F*w),
for p = (F'#$#ZE', {F'},),
where m, k,l >0andm +k > 1and w € U*;
3. (F™|F*wF, F"|ZE') -, (F™ZE', F"F*wF),
for p = (F'#$#ZE'; (F'}, 0),
where m,k,l > 0andm +k > land w € U*;
4. (F*w|F, ZE|) \-, (F*w, ZEF), for p = (#F$ZE#;{F'}, D),
where k > 1 and w € U*.

Moreover, using the word ZEF does not yield new results, because (F' "‘wlF, ZE|F)
Fp (F"‘wF, ZEF) for p = (#F$ZE#; {F'}, @), where k > 1 and w € U*.
In sum, we obtain L(y) = L(G). ‘ ‘ », (]

Remark 8. Note that in the rules (p; C,, C3) of the H system with permitting contexts
constructed in the proof of Lemma 6, the pairs (C,, C;) of permitting contexts are of the
special form ({X}, @) for some nonterminal X, i.e., we only check the occurrence of one
nonterminal in the first term of the splicing. This can be viewed as a normal form result
for our systems. Also observe that when considering the rules (u;#us2$u #uz; Cy, Cy),
(us#usSustuy; Ca, Cy) for each rule (u #u Susttuy; Cy, Cz) in the previous proof, the

Copyright © 2000 All Rights Reserved

102 : : R. Freund, L. Kari, and Gh. Piun

generated language is the same: the place of using such rules is unique, hence we always
have (x, y) &, (x, y).

Moreover the longest sites appear in rules of type 2, and they are of length four: for
jv] = 2 we have |X'vZ| = 4. All other rules have sites of length two, but for rules in
group 1 we have |uY| = 3 for |u| = 2.

Remark 9. A permitting context splicing rule as in the proof of Lemma 6, i.e., with only
one checked symbol which should appear at an end of the string, might be implemented
in the following way.

The restriction enzymes work only on double-stranded sequences. We melt the
solution in order to obtain single-stranded sequences (raising the temperature, the two
strands of a double-stranded DNA sequence are separated, resulting in single-stranded
sequences of nucleotides). Add a primer which contains the complement of the permitting
symbol. (A primer is a short single-stranded sequence of nucleotides, complementary to
a subword of a given single-stranded sequence; due to the complementarity, the primer
anneals to the sequence and this activates the polymerization process by which the whole
sequence will become double-stranded—provided the environment contains a sufficient
amount of the single nucleotides requested by the doubling.) Hence, this primer will
be attached only to single-stranded sequences containing the designated symbol (at an
end of it). Only these single-stranded sequences will enter the polymerization reaction,
leading to double-stranded sequences, hence the enzyme will act on them only.

The construction in the previous proof is an extension of the idea used in the third
example in Section 2.3, and it also resembles the way of simulating Turing Machines
by Post TAG systems in Minsky (1961). The same idea is also used in the proof of the
inclusion RE C EH(FIN, REG) from Pdun (1996b)

Lemma 7. EH(FIN, pFIN) C EH({1], pFIN).

Proof. Consider an H system y = (V, T, A, R) with permitting contexts, and suppose
that A = {w, ws,..., w,},n > 2. Take the new symbols cyp, Cly s Cny Cntl and
" construct the new H system with permitting contexts ‘

y' =V U{cyct,...,CnCnrr), T, {w}, R,
where

W = CeC1WC2W3 * - * Cpy Cp41€0,
R =RUR"

with R” containing the following rules with permitting contexts:

1. (coftci$cittwiciyy; 0, B), for 1<i<n,
2. (cowittciy1$cniittco; 8, 9), for 1<i<n,
3. (#cgcy ScoBw;co; 9, 9), for 1<i<n,

4. (wi#co$cpycot; B, 0), for 1<i<n.

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing . : 103

It is easy to see that by splicing w with itself using a rule of type 1 we obtain
the word Cow;Ci4+1Wi+1Cit2 -+ CaWnCnt1€0 (and CoC1W) « « + €;CLW] * + + CnWnCr+1€C0). By
splicing this word with w using the rule in group 2 with the suitable value of i we get
cow;co (and coCwy « « * Cpp1Cigt Wit * * * CnWyCnt1Co). Using rules from groups 3 and

-4, we can now remove the front cp and then the back cp. All the axioms of y can be
detached from w; now applying rules in R we can produce each word of L(y), hence
L) S L)

Conversely, if we apply a rule of R to two copies of w (possibly on subwords
w;, w; which cannot be spliced correctly when they are separated, due to the restrictions
imposed by the permitting contexts), producing words of the form zjc;z2c;jz3, with 23
in V*, then z; can be separated from the neighboring ¢;,c; if and only if j =i + 1
and z; = w;, hence no new word can be produced in this way. The same holds if the
word zjc;za¢;23 is obtained after several splicings, possibly also using words of the form
COW;Ci4] * * * CnWnCn+1Co, €LC., OF CoW; Co, Obtained after using rules in groups 1.and 2. On
the other hand, splicing copies of w or of cow;Ci4 « - - CpWnCp+1Co, €tc., and cow;co as
above using rules in R, we can obtain only words starting and ending with co, hence we
can separate subwords c;zc;, z € V*, out of them if and only if j =i + 1 and z = w;.

If a rule in R is applied to two words of the form w;cq, wjco obtained after using
rules of type 3, then instead of v and w we obtain vcg and wcy, where v and w are
correct splicing results. If a rule in R is applied to a word w;co and to another word of
a different form (hence also starting with a symbol ¢p), then we either obtain a word
both starting and ending with ¢y (when w;¢p is the second term of the splicing), and,
as above, we can separate from it only subwords of the form c;w;c;j1), or we obtain a
word zicj22, 21 € V*, with w; contributing to z;, and z; cannot be separated from ;.
Therefore, the rules in R can be used successfully only for splicing the result of using
rules in groups 1-3 (and 4), and this corresponds to the work of y, starting from the
axioms in A. Therefore, L(y’) C L(y) is also true.]
Remark 10. When considering rules associated to rules in R” by the reflexivity as-
sumption, the language generated is not modified, because these rules can be applied only
on plaées defined by symbols g, ¢y, . . ., cp+1, hence what we obtain always consists of
complete words w;, I < i < n, and symbols co, ¢y, ..., Cny1.

We now prove the relations in Theorem 2, i.e.,

EH([1], pFIN) = EH(F\, F;) = RE,
for all families Fy, F> such that FINC Fy CRE,FIN C F2 CRE.

Proof of Theorem 2. In the previous two lemmas we have proved

Lemma 6 : RE € EH(FIN, pFIN)
Lemma 7 : EH(FIN, pFIN) € EH([1], pFIN).

Combining these relations, we get

RE < EH([11, pFIN).

Copyright © 2000 All Rights Reserved

104 : ' R. Freund, L. Kari, and Gh. P3un
The inclusions .
EH([ll sz) C EH(Fy, pF),

for all Fi, F2 suchthat FIN C Ff CRE,FINC F, C RE hold by the definitions.
Because of the Turing—Church thesis, we have

"EH(Fy, pF2) € RE
fo‘r all F, F, CRE. Consequendy,
Ré = EH([1), pFIN),
which cqmpletes the proof. | : O

4.3. Extended H Systems with Forbidding Contexts

Instead of controlling the applicability of a splicing rule by using permitting contexts,
i.e., by checking the occurrence of specific subwords (symbols) in the underlying words,
we can also control the applicability of a splicing rule by using forbidding contexts, i.e.,
by forbidding the occurrence of specific subwords (symbols) in the underlying words.
These forbidding contexts can be interpreted as inhibitors of the associated rules.

Definition 5. An extended H system with forbidding contexts is a quadruple
}’ = (Vv T’ A7 R)’

where V, T, A are as in Definition 1, and R is a set 6f triples (we call them rules with
forbidding contexts) of the form ‘

= (r; Dly DZ)o

where r = u#u;$us#u, is a splicing rule over V and Dy, D, are finite subsets of V*.
As in Definition 4, the triple p can also be represented by the word

o(p) = uituSushu, @& - - - &w @i & - - - &g,

where Dy = {w;,...,w} and Dy = {vy,..., V), k,m > 0. We denote p(R) =
{e(p) | P €R}). .

For x,y,z,w € V* and p € R as above, we define (x, y) b, (z, w) if and only
if (x,y) b (z, w), no word contained in D) appears as a subword in x, and no word
contained in D, appears as a subword in y (of course, when D1 =@ or D, = @, then
this i 1mposes no restriction on the use of rule p)

The language generated by y is defined in the natural way, and the family of lan-
guages L(y); fory = (V T, A, R) as above, with A € F, and p(R) € F, is denoted

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing o 105
by EH(Fy, sz). Instead of F; we put [k] when systems with at most k axioms are used.

Theorem 3. EH([I] fFIN) = EH(Fy, fF;) = RE, for allfamtltes Fy, F, such that
FINC Fy, CRE,FINC F, CRE.

The relations above are consequences of the following two lemmas, of the Turing—
Church thesis, and of the obvious inclusion EH({1], fFIN) C EH(F,, f F), F1, F> as
in the theorem above.

Lemma8. RE C EH(FIN, fFIN).

Proof. Consider a type-0 grammar G = (N, T, S, P) like in the proof of Lemma 2,
let Lab be the set of labels of the rules in P, and denote U’ = N U T U {B}. We now
construct the extended H system with forbidding contexts

y=(,T,AR),

where V, T, and A are as in the proof of Lemma 6 and R contains the following rules
with forbidding contexts:

(#uYS$SZ#Y,; 0 — (X, Y}, 0), for rru—>veP,
(X#$X'v#Z; Q0 — (X, Y,}, D), for ru—>veP,
#Y,$Z#Y;, 0 - (X', Y,},9), for ru—>veP,

(X'#$X#Z, Q — (X', Y}, 0),

#HaY$ZH#Y,, O — (X, Y}, D), for ael’,
(X#$X'a#Z; Q — (X, Y,}), 9), for ¢ el
#HY,$Z#Y,; O — (X', Y,). 9), for €U,
(#YSZ#F; Q ~ (X, Y), D),

(XB#S$F'#Z; Q — {F, X}, 9),

(#FS$SZE#,Q —- {F,F'},9),

(F'#$#ZE'; Q — {F'},),

OV RNAUNI LN =

b

where
0=(X,X,Y,Z,F,F}U{Y, |a € U'}U{Y, | r:u — v € P}

is the set of all symbols occurring in the permitting contexts used by the extended H
system in the proof of Lemma 6. It is easy to see that the permitting contexts in the
rules of the extended H system with permitting contexts constructed in the proof of
Lemma 6 correspond in a precise manner to the forbidding contexts in the H system with-
forbidding contexts constructed as above. (All words produced by these systems start
and end with symbols in Q, except for the words in the last steps of the process, when
rules 8—11 are used. The presence of X, for instance, means precisely that neither X’ nor
F’ is present in the leftmost position of the first term of the splicing. Similar arguments
hold true for the rightmost position of the first term of the splicing, where ¥ and its

Copyright © 2000 All Rights Reserved

106 R. Freund, L. Kari, and Gh. Piun

variants are present.) Hence, according to the arguments given in the proof of Lemma 6,
we conclude L(y) = L(G). O

Remark 11. Note that in the rules (p;; Dy, D;) of the extended H system with for-

bidding contexts constructed in the proof of Lemma 8, the pairs (Dy, D) of forbidding

contexts are of the special form (M, @) with M C V —T, i.e., we only check the nonoc-

currence of some nonterminals in the first term of the splicing. In the same way as for the

construction in Lemma 6, we can show that the reflexivity assumption does not change
“the language generated.

Lemma9. EH(FIN, fFIN) C EH([1], fFIN).

Proof. For an extended H system with forbidding contexts y = (V, T, A, R) with
A = {wy, wy, ..., Wy}, we construct an extended H system

¥ =(VU{c), T, {w},R),
where
W = CCWICWC - - - CWRCC

and

R ={(p; A U{c}, RU{ch | (p; F1, F2) € R}
U {(#ccScH; 9, B), (kcScct#; 0, 9)}. ‘

The splicing rule #cc$c# applied to two copies of w allows us to cut one w at the symbol
c in front of some axiom w;, i.e., as one new word we obtain w;c - - - wycc, and the
splicing rule #c$cc# applied to this word and to another copy of w then allows us to
separate the axiom w;.

As the rules from R can only be applied to words not containing the nonterminal ¢
any more, we obviously obtain L(y') = L(y). a

Another way of controlling the work of splicing rules is to impose sequencing
restrictions (like in programmed grammars or in graph controlled grammars, etc., see
Dassow and P#un (1989)). Probably other control mechanisms used in formal language
theory for regulating the work of context-free grammars can also be used as in Theorems
2 and 3 above, but we do not follow this direction further here. It is a matter of practical
feasibility to choose one or the other of these regulating mechanisms, according to the
possibility of implementing them. Theorems 1--3 prove in a convincing manner that the
full power of Turing Machines can be reached by considering extended H systems with
finite components (axiom set and sets of rules), provided such control mechanisms are
involved. : :

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 107
S. - Universal H Systems

The results in the previous sections prove that finite H systems of the types considered are
computationally complete, but this does not mean that programmable computers based
on splicing can be constructed. To this aim, it is necessary to find universal H systems as
described in Section 1.4, i.e., systems with all components but one (the set of axioms)
fixed, able to behave as any given H system y, when a code of y is introduced in the set
of axioms of the universal system. V

Surprisingly enough, universal H systems exist for all the types of extended H
systems we have considered in the previous sections, and this is a consequence of the
very proofs of Lemmas 2, 6, and 8.

Definition 6. Given an alphabet T and two families of languages, F;, F,, a construct
vv =Wy, T, Ay, Ry),

where Vy is an alphabet, Ay C Vj, Ay € Fi,and Ry C Vj#VSV3#V}, Ru € F,,is
said to be a universal H system of type (Fy, F3), if forevery y = (V, T, A, R) of type
(Fi, F,) there is a language A, such that Ay U A, € Fj and L(y) = L(y]), where
yl’]_ = (VWy,T,Ay UA,, Ry).

The particularizations of this definition to mH systems or to H systems with permit-
ting (resp. forbidding) contexts are obvious. '

The restriction to a given terminal alphabet cannot be avoided, but this is anyway
imposed by the fact that the DNA alphabet has only four letters. Moreover, in order to
aim at obtaining universal H systems, we must also be able to bound the number of
nonterminal symbols used. Fortunately, this can indeed be done.

Lemma 10. Given an extended H system y=(V,T,A,R) oftype (M, R), for F, F
Jamilies of languages closed under A-free morphisms, we can construct an extended H
systemy’ = ({c1, 2}UT, T, A', R') of the same type (F, F,), such that L(y) = L(y").
This is also true for y being an mH system or an H system with permitting (resp.
Sorbidding) contexts. | — :

Proof. IfV—T ={Z,,..., Z,}, then we consider the morphism h: V*+ — ({c;, c2}U
T)*, defined by '

h(Z) = cichen, 1<i<n,
h(a) = a, aeT. '

Then

= h(A),
= (B #h(uz)$h(uz)#h(us) | ul#u2$u3#u4 € R}.

The equality L(y) = L(y") is obvious, because due to the form of the axioms in A’

| Copyright © 2000 All Rights Reserved

108 _ : R. Freund, L. Kari, and Gh. Piun

and of the rules in R’, the blocks clcécl, 1 <i < n, are never broken by splicing, they
behave in the same way as the corresponding symbols Z; do. - :

For the case when y is an mH or an H system with permitting (resp. forbidding)
contexts, the definitions of the corresponding components of y”are obvious, transferring
them from y to y’ by the morphism . [m]

Note that in the proof of this lemma it is important to work with strings as permitting
or forbidding contexts, not with symbols, as in the proofs of Lemmas 6 and 8. This, how-
ever, does not introduce a significant additional difficulty in checking these conditions,
because the way of checking the presence of a symbol in a string by using a primer, as
described in Remark 9, works in a similar way when we have to check the presence of a
substring. This is true at least for short strings. Moreover, we have obtained a system y’

.with only two auxiliary symbols. Increasing the number of nonterminals allowed (but

still having this number bounded), we can decrease the length of the codings of the
nonterminals of the system y we have started with, thus decreasing the length of the -
necessary primer, hence the difficulty of checking the context conditions. The balance.
of the number of nonterminals and of the length of the mentioned codings is a matter of
practical interest, hence it should be investigated under specific circumstances.

From a practical point of view, the main results of this paper are the following two
theorems: -

Theorem 4. For every given alphabet T there exists an extended mH system of type
(m[2], FIN) which is universal for the class of extended mH systems with the terminal
alphabet T.

Proof. Consider an alphabet T and two different symbols ¢y, c; notin T

For the class of type-0 Chomsky grammars with given terminal alphabet, there
are universal grammars, i.e., constructs Gy = (Ny, T, —, Py) such that for any given
grammar G = (N, T, S, P) there is a word w(G) € (Ny U T)* (the “code” of G) such
that L(G}) = L(G) for G, = (Ny, T, w(G), Py). (The language L(G) consists of
all terminal words z such that w(G) =>* z using the rules in Py.) This follows from
the existence of universal Turing Machines (Turing, 1936) and the way of passing from
Turing Machines to type-0 grammars and conversely, or it can be proved directly (an
effective construction of a universal type-0 grammar can be found in Calude and Pdun
(1981)).

For a given universal type-0 grammar Gy = (Ny, T, —, Py), we follow the con-
struction in the proof of Lemma 2, obtaining an extended mH system y, = (V}, T, A1, Ry,
where the axiom (with multiplicity one) wo = X?¥ SX? is not considered. Note that all
other axioms in A, (all having infinite multiplicity) and the rules in R, depend on Ny,
T, and Py only, hence they are fixed.

As in the proof of Lemma 3, we now pass from y; to y» = (V3, T, A2, R;), with at
most two axioms in Az. In fact, as A contains only axioms with infinite multiplicity, A,
consists of only one word (that one denoted by z in the proof of Lemma 3), which has
infinite multiplicity.

We now follow the proof of Lemma 10, codifying all symbols in V, — T by words

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing ' 109
over {ci, c2}; the system obtained,
“ YU = ({c1,c2} UT, T, Ay, Ry),

is the universal mH system we are looking for.

Indeed, take an arbitrary extended mH system y = (V, T, A, R). From the Turmg—
Church thesis we know that L(y) € RE, hence there is a type-0 grammar Gy =
(No, T, So, Po) such that L(yp) = L(Gy) (in fact, the grammar G, can be constructed
directly and in an effective way). Construct the code of Gy, w(Go), as imposed by the
definition of universal type-0 grammars one uses, consider the word

wo = X;Yw(Go)X3,

corresponding to the axiom wy in the proof of Lemma 2, then codify wj over {c;, c,}UT
as we have done above with the axioms of ;. Denote the obtained word by w(yo) Then
L(yy) = L(y), for y; = (fer, 2} UT, T, {(w(y), D} U Ay, Ry).

This can be seen easily: In the proof of Lemma 2, the system y simulates the work
of G, starting from the axiom S of G, bracketed as in X 2YSX 2. If instead of S we put
an arbitrary word x over the alphabet of G, then in y we obtam exactly the language
of terminal words y such that x =* y in G. If we start from a universal grammar Gy
and § is replaced by the code w(G) of a type-0 grammar G, equivalent with y;, then
the system yy, associated as above with the universal grammar Gy, will simulate the
work of Gy, starting from w(Gg). Hence L(y,) = L(Gy) = L(Go) = L(y), for

= (Ny, T, w(Go), Fv)- a

Theorem 5. For every given alphabet T there is an extended H system of type ([1], FIN)

with permitting (resp. forbidden) contexts that is universal Jor the class of extended H
systems with permitting (resp. forbidding) contexts and with the terminal alphabet T .

Proof This can be proved in the same way as in Theorem 4 above, by using the
constructions given in the proofs of Lemmas 6, 8, and 10. -0

* Note that the universal H systems yy furnished by the previous proofs contain only
one axiom and that in order to enable them to simulate any given extended H system
¥, we only have to add to y;; one more axiom (of multiplicity one in the case of mH
systems).

The “computers” based on yy seem to be quite economical, as far as their “pro
gramming” is concerned.

6. Conclusions
The fact that the splicing operation is very powerful (as a formal operation on words and

languages) has been proved in various places. The usual way to do this is to characterize
the family of recursively enumerable languages using the splicing operation and other

Copyright © 2000 All Rights Reserved

110 ' R. Freund, L. Kari, and Gh. Pun

“weak” prerequisites (other operations, special forms of splicing rules (Pdun, 1996a,
1996b; Piun et al., 1996; Piun and Salomaa, 1996), or additional languages such as
Dyck languages, palindrome languages, etc. (Yokomori and Kobayaski, 1995)). Our
results in Sections 3 and 4 are the strongest possible of this type, because we only use
the splicing, the intersection with a language of the form T+ (which according to Pdun
et al. (1996), cannot be avoided), and systems with finite sets of axioms and finite sets of
splicing rules. While it is true that we use the additional control mechanism of multiplicity
counting or permitting (resp. forbidding) contexts, such features are essential and cannot
be removed; indeed, in view of Culik and Harju (1991) and Pixton (1995), ordinary finite
splicing systems can produce regular languages only. ,
v It is rather interesting to notice in this context the tremendous influence that certain

apparently minor changes in the structure of an extended H system have on its generative
power. For instance, in the case of mH systems, the transition from one axiom to two
axioms causes an increase from the power of finite automata/regular grammars to the
full power of Turing Machines/type-0 Chomsky grammars (Theorem 1). Similarly in
the case of H systems the addition of permitting contexts, one for each rule, strengthens
the generative power to that of Turing Machines/type-0 Chomsky grammars (Lemma 6).

However, as we have already pointed out, the most significant of the results we ob-
tained is the existence of universal H systems of various types. This theoretically proves
the feasibility of designing universal and programmable DNA computers, where a pro-
gram consists of a single word to be added to the axiom set of the universal computer. In
the particular case of mH systems, these program axioms have multiplicity one, while
an unbounded number of copies of all the other axioms is available. The “fixed” axioms
of the computer can be mterpreted as a sort of nonerasable stored information available
~ for free. :

As a closing remark, note that the proofs of Theorems 4 and 5 rely on one e hand on
the lemmas in Sections 3 and 4, and on the other hand on the existence of universal type-0
grammars and on the possibility of commuting from an H system to a type-0 grammar
and conversely. This reduces the problem of the existence of universal H systems to the
existence of universal Chomsky grammars (or Turing Machines). However, this quite
indirect way, while theoretically useful, is inconvenient from a practical point of view.
The open problem that remains is the effective construction of a universal H system that
is as simple as possible. As the task seems to be a difficult one, it is perhaps better to -
look for a construction which at the same time meets the practical requirements raised
by a possible implementation of such a universal H system. In short, we leave this task
to a joint team of language theorists and practitioners of DNA computing.

Acknowledgments

Very useful discusssions with Arto Salomaa, Gabriel Thierrin, Helmut Jiirgensen, Tom Head, and Dennis
Pixton are gratefully acknowledged. Thanks are also due to two anonymous referees for many remarks about
an earlier version of this paper, allowing us to improve the readability of the text significantly.

Copyright © 2000 All Rights Reserved

DNA Computing Based on Splicing 111

References

L. M. Adleman Molecular computatlon of solutions to combmatonal problems, Science, 226 (Nov. 1994),
1021-1024.

L. M. Adleman, On constructing a molecular computer, in DNA Based Computers (R. J. Lipton and E. B. Baum,
eds.), Proc. of a DIMACS Workshop, Princeton, 1995, American Mathematical Society, Providence; RI,
1996, pp. 67-74. '

C. Calude and Gh. Piun, Global syntax and semantics for recursively enumerable languages, Fundamenta
Informaticae, 4(2) (1981), 245-254.

K. Culik IT and T. Harju, Splicing semigroups of dommoes and DNA, Discrete Applied Mathematics, 31
(1991), 261-277.

J. Dassow and Gh. P#un, Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin, 1989

L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhoid, New York, 1991.

K. L. Denninghoff and R. W. Gatterdam, On the ulldecldablhty of splicing systems, International Journal of
Computer Mathematics, 27 (1989), 133-145.

S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.

D. K. Gifford, On the path to computation with DNA, Science, 226 (Nov. 1994), 993-994.

D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading,
MA, 1989.

J. Hartmanis, On the weight of computation, Bulletin of the EATCS, 55 (1995), 136-138.

M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.

T. Head, Formal language theory and DNA: an analysis of the generative capacity of specific recombinant
behaviors, Bulletin of Mathematical Biology, 49 (1987), 737-759.

T. Head, Gh. Pun, and D. Pixton, Language theory and molecular genetics. Generative mechanisms suggested
by DNA recombination, in Handbook of Formal Languages, Vol. 2 (G. Rozenberg and A. Salomaa, eds.),
Springer-Verlag, Berlin, 1997, pp. 295-360.

J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley,
Reading, MA, 1991.

L. Hunter, Molecular biology for computer scientists, in Artificial Intelligence and Molecular Biology
(L. Hunter, ed.), AAAI Press/ MIT Press, Menlo Park, CA, 1993, pp. 1-46,

J. H. Koza and J. P. Rice, Genetic Algorithms: The Movie, MIT Press, Cambridge, MA, 1992,

W.-H. Li and D. Graur, Fundamentals of Molecular Evolution, Sinauer, Sunderland, MA, 1991.

R. J. Lipton, Speeding up computations via molecular biology, in DNA Based Computers (R. J. Lipton and
E. B. Baum, eds.), Proc. of a DIMACS Workshop, Princeton, 1995, American Mathematlcal Society,

Providence, RI, 1996, pp. 67-74.

R. J. Lipton, DNA solution of hard computational problems, Science, 268 (April 1995), 542-545.

A. Mateescu, Gh. Piun, G. Rozenberg, and A. Salomaa, Simple splicing systems, Technical Report 95-09,
Department of Computer Science, Leiden University, 1995, and Discrete Applied Mathematics, 84 (1998),
145-163.

M. L. Minsky, Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing
machines, Annals of Mathematics, 74(3) (1961), 437-455.)

Gh. Piun, Splicing. A challenge for formal language theorists, Bulletin of the EATCS, 57 (1995a), 183-194.

Gh. Piun, On the power of the splicing operation, International Journal of Computer Mathematics, 59 (1995b),
27-35.

Gh. Piun, On the splicing operation, Discrete Applied Mathematics, 70 (1996a), 57-79.

Gh. Piun, Regular extended H systems are computationally universal, Journal of Automata, Languages, and
Combinatorics, 1(1) (1996b), 27-36.

Gh. Piun, G. Rozenberg, and A. Salomaa, Computing by splicing, Theoretical Computer Science, 168(2)
(1996), 321-336.

Gh. Piun and A. Salomaa, DNA computing based on the splicing operation, Mathemattca Japamca, 43(3)
(1996), 17-32.

D. Pixton, Linear and circular splicing systems, Proc. 1st IEEE Internat. Symp. on Intelligence in Neural and
Biological Systems, Herndon, 1995, pp. 38-45.

D. Pixton, Regularity of splicing languages, Discrete Applied Mathematics, 69 (1996), 101-124.

Copyright © 2000 All Rights Reserved

12 o R. Freund, L. Kari, and Gh. Paun

G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New York, 1980.

G. Rozenberg and A. Salomaa, Handbook of Formal Languages, Springer-Verlag, Berlin, 1997.

A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the
London Mathematical Society, Ser. 2, 42 (1936), 230-265; a correction, 43 (1936), 544-546.

A. Salomaa, Formal Languages, Academic Press, New York, 1973. . '

D. B. Searls, The computational linguistics of biological sequences, in Artificial Intelligence and Molecular
Biology (L. Hunter, ed.), AAAI Press/MIT Press, Menlo Park, CA, 1993, pp. 47-120.

A. P. J. van der Walt, Random context grammars, Proc. IFIP Congress 1970 North- Holland, Amsterdam,
1971, pp. 66-68.

T. Yokomori and S. Kobayashi, DNA evolutionary linguistics and RNA structure modelling: a computatlonal
approach, Proc. 1st IEEE Internat. Symp on Intelligence in Neural and Bzologtcal Systems, Hemdon
1995, pp. 38-45.

Y. Zhang and N. C. Seeman, A sohd-support methodology for the constructlon of geometrical objects from
DNA, Journal of the American Chemical Society, 114 (1992), 1656-1663.

Received August 1997, and in final form March 1998.

Copyright © 2000 All Rights Reserved

