
Computing for Genomics 

Paint by Numbers and Beyond 



Genomics – The study of Genomes 



The Genome 

•  The	  DNA	  in	  each	  cell	  
•  ∼3	  billion	  base	  pairs	  
•  Any	  two	  people	  are	  99.6%	  

to	  99.9%	  the	  same	  

h;p://www.healthline.com/health-‐blogs/tech-‐medicine/creaAng-‐dna-‐art	  
h;p://i.livescience.com/images/i/000/017/621/i02/ITC_EukaryoAcCell_Copy.jpg?1309355705	  



The Genome 
•  Genes (coding DNA) 
•  Noncoding 
– Regulatory regions 
– Structural 
– Repeat elements 
– Non coding RNA 
– Pseudogenes/Relics/Unclassified 



Repeat	  Elements	  

Genes	  

Introns	  

Other	  Intergenic	  

DNA	  Transposon	  

Simple	  Repeats	  

Segmental	  DuplicaAons	  

LINEs	  

SINEs	  

LTR	  retrotransposons	  

Gregory,	  T.	  Ryan.	  "Synergy	  between	  sequence	  and	  size	  in	  large-‐scale	  genomics."	  Nature	  Reviews	  GeneAcs	  6.9	  (2005):	  699-‐708.	  



Human Variation 
•  Point mutations 
– SNPs 

•  Small insertions, deletions and indels 
•  Structural Variation  
– Copy Number Variation 



The Human Reference Genome 
•  Around 3Gb 
– Haploid ( one version of each chromosome ) 

•  Aims to be point of reference for research 
– Publically available 
– Consistent coordinates 

•  Lots of annotation 

– Well documented major and minor releases 



Morey,	  Marcos,	  et	  al.	  "A	  glimpse	  into	  past,	  present,	  and	  future	  DNA	  sequencing."	  Molecular	  geneAcs	  and	  metabolism	  110.1	  (2013):	  3-‐24.	  



Genome Assembly 

Lander,	  Eric	  S.,	  et	  al.	  "IniAal	  sequencing	  and	  analysis	  of	  the	  human	  genome."	  Nature	  409.6822	  (2001):	  860-‐921.	  
Venter,	  J.	  Craig,	  et	  al.	  "The	  sequence	  of	  the	  human	  genome.”	  Science	  291.5507	  (2001):	  1304-‐1351.	  



Sequence Alignment 
•  Find the best approximate match 
–  Global 

 
 
–  Local 
 
 
–  Free-end Global  

A  C  A  A  C  G  
      |  x  |         
-  -  A  G  C  - 

A  C  A  A  C  G  
      |  x  |   
      A  G  C   

A  C  A  A  C  G  
|        x  |         
A  -  -  G  C  - 



Global Alignment 
A	   C	   A	   A	   C	   G	  

0	   -‐2	   -‐4	   -‐6	   -‐8	   -‐10	   -‐12	  

A	   -‐2	   1	   -‐1	   -‐3	   -‐5	   -‐7	   -‐9	  

G	   -‐4	   -‐3	   -‐2	   -‐4	   -‐6	   -‐8	   -‐6	  

C	   -‐6	   -‐5	   -‐2	   -‐4	   -‐6	   -‐5	   -‐7	  

match	   	  1	  

mismatch	   	  -‐3	  

gap	   	  -‐2	  

D(i-‐1,	  j-‐1)	  +	  (match	  ||	  mismatch)	  

D(i,j)	  =	  max	  	  	   D(i-‐1,	  j)	  +	  gap	  

D(i,	  j-‐1)	  +	  gap	  

A  C  A  A  C  G  
|        x  |         
A  -  -  G  C  - 

Backtrack	  to	  get	  alignment:	  



Local Alignment 
A	   C	   A	   A	   C	   G	  

0	   0	   0	   0	   0	   0	   0	  

A	   0	   3	   0	   3	   3	   1	   0	  

G	   0	   0	   1	   0	   1	   1	   4	  

C	   0	   0	   3	   0	   0	   4	   0	  

match	   	  3	  

mismatch	   -‐2	  

gap	   -‐3	  

0	  

M(i,j)	  =	  max	  	  	  
M(i-‐1,	  j-‐1)	  +	  (match	  ||	  mismatch)	  

M(i-‐1,	  j)	  +	  gap	  

M(i,	  j-‐1)	  +	  gap	  

Backtrack	  to	  get	  alignment:	   A  C  A  A  C  G  
      |  x  |   
      A  G  C   



Local Alignment 
•  Longest common subsequence 
•  Will find the best aligning substring in both 
–  i.e. may not align the whole read 

AGATGTGCTGCCGCC 
   |||x|||   
 TTTGTACTGAAA 



Free-end Global Alignment 
A	   C	   A	   A	   C	   G	  

0	   0	   0	   0	   0	   0	   0	  

A	   0	   1	   -‐1	   1	   1	   -‐3	   -‐3	  

G	   0	   -‐2	   -‐2	   -‐1	   -‐1	   -‐2	   -‐2	  

C	   0	   -‐2	   -‐1	   -‐3	   -‐2	   0	   -‐2	  

match	   	  1	  

mismatch	   	  -‐3	  

gap	   	  -‐2	  

D(i-‐1,	  j-‐1)	  +	  (match	  ||	  mismatch)	  

D(i,j)	  =	  max	  	  	   D(i-‐1,	  j)	  +	  gap	  

D(i,	  j-‐1)	  +	  gap	  

A  C  A  A  C  G  
      |  x  |         
-  -  A  G  C  - 

Backtrack	  to	  get	  alignment:	  



Free-End Alignment 
•  Aligns whole of both reads 
– Containment 
– Longest prefix/suffix overlap 

TTCAGATGTGCTG 
------|||x|||------   
      TGTACTGACGTAG 



Dynamic Programming 
•  O(nm)  for time* and space complexity ** 



Genome Assembly 

Lander,	  Eric	  S.,	  et	  al.	  "IniAal	  sequencing	  and	  analysis	  of	  the	  human	  genome."	  Nature	  409.6822	  (2001):	  860-‐921.	  
Venter,	  J.	  Craig,	  et	  al.	  "The	  sequence	  of	  the	  human	  genome.”	  Science	  291.5507	  (2001):	  1304-‐1351.	  



The Human Reference Genome 
•  Based on limited subjects 
– Does not capture variation  

•   is one “Golden path” 

•  Subsequences reported are not unique 
–  It has all repeats found in these subjects that 

could be resolved 
 
 



Next Generation Sequencing 
•  Traditional sequencing doesn’t scale up 

•  Next Generation Sequencers 
– high throughput (4h-3days) 
– high coverage  (20x-50x) 
– short reads   (25-200bp) 





NGS Uses Resequencing 
•  NGS produces huge amounts of data 
– 120Gb - 1Tb compressed 

•  Dynamic Programming is impractical 
 
•  Rather than assemble: 
– map to the reference quickly 

è Read mapping algorithms 
 

–  verify local alignment (and call variants) 
è Dynamic programming 
è Local de-novo assembly 



Exact Matching 
•  Instead of looking for “good” matches, only 

look for all exact matches 

Still not enough for genome scale 
– Exact string matching algorithms time 

complexity 
•  Worst:        O(nm)  
•  Best:           Ω(n/m)  



Fast Approximate Matching 
•  Expect very few differences between the 

sample’s reads and the reference genome 
– Sequencing errors 
– Natural variation 

•  Expect even fewer differences between 
sample’s reads  
– Sequencing error 
– May be variation within a sample (tissue) 
– May be variation between repeated regions 



Read Mapping Algorithms 
Two main approaches  
– Filter 
–  Index 

 



Filtering 

•  Reduce the number of possible 
approximate matches 

•  In practice, want really good alignments 
èExpect sections of the alignment to be exact 
èExpect no more than k errors (mismatches) 



Pigeonhole Lemma 

•  Assume no more than k errors tolerated 
•  Divide query into k+1 pieces 

–  Search for each of these in the genome 

•  If the query is in the genome, one will match exactly  
–  Report that as a candidate region 

Full	  read	  (query)	  

q-‐grams	  (also	  called	  k-‐mers	  or	  seeds)	  	  

Red	  shows	  mismatch	  to	  reference	  (not	  pictured)	  



q-gram Lemma 

•  Assume no more than k errors tolerated 
•  Create all possible overlapping q-grams from the read 

–  search for all of these 



q-gram Lemma 

•  Number of q-grams for read of 
length n? 

•  k errors affect how many q-grams 
at most in worst case? 

•  Assume no more than k errors tolerated 
•  Create all possible overlapping q-grams from the read 

–  search for all of these 



q-gram Lemma 

•  Number of q-grams for read of 
length n? 

•  k errors affect how many q-grams 
at most in worst case? 

•  Assume no more than k errors tolerated 
•  Create all possible overlapping q-grams from the read 

–  search for all of these 
•  If the query is in the genome, at least n-(k+1)q +1 of the q-grams match 

exactly 
–  count the number of q-grams that matched, and if it passes this threshold, 

report a candidate region 



Finding Candidate Regions 

Pigeonhole	  

q-‐gram	  

Reference	  Genome	  



Indexing 
•  Store the genome/reads in a 

data structure that facilitates 
fast exact or near-exact 
alignment 

•  Must be reasonable for memory 
limits of the machine 



Indexing Data Structures 

Ben	  Langmead	  teaching	  materials:	  h;p://www.langmead-‐lab.org/teaching-‐materials/	  



FM Index 
•  Uses Burrows-Wheeler transform 
– Plus extra tables to speed things up 



Burrows-Wheeler transform 

– Because they are rotations 
•  the character in the last column is what precedes the 

character in the first column in the original string 

– Because the suffixes are sorted 
•  the first row, last character is the end of the original string 



Burrows-Wheeler transform 

– Because the suffixes are sorted (cont’d) 
•  the rank of the character in the last column is the same as 

the first 



Burrows-Wheeler transform 

•  We can find the position in the first column (F) based only 
on information from the last column (L) 

LF(‘c’, 6) = Occ(‘c’) + Count(‘c’, 6) 
                = 4 + 1  
 
Occurrence:   

 Number of letters before any ‘c’ in F?      
 4  ($ and 3 a’s) 

 
Count: 

 How many ‘c’s have we seen in L? 
 1  (c0) 



Burrows-Wheeler transform 

•  Walk left algorithm 
– We can use the BWT and the LF function to 

reconstruct the original text 



FM Index for Exact Matching 

Ferragina,	  Paolo	  and	  Manzini,	  Giovanni.	  "OpportunisAc	  data	  structures	  with	  applicaAons."	  	  
FoundaAons	  of	  Computer	  Science,	  2000.	  Proceedings.	  41st	  Annual	  Symposium	  on.	  IEEE	  (2000)	  



FM Index for Exact Matching 

q = “aac” 
top = 0 
bot = len(bwt) 
for qc in reverse(q): 

 top = LF(top, qc) 
 bot = LF(bot, 

qc) 

Ferragina,	  Paolo	  and	  Manzini,	  Giovanni.	  "OpportunisAc	  data	  structures	  with	  applicaAons."	  	  
FoundaAons	  of	  Computer	  Science,	  2000.	  Proceedings.	  41st	  Annual	  Symposium	  on.	  IEEE	  (2000)	  



FM Index for Exact Matching 

Track a top and bottom index 
–  These bound the remaining possible matches at 

each step 
–  If they are ever the same, there are no matches 

Here,  LF is called on the query characters  
–  “Where are the first & last qc you saw in F?” 

The end TOP index is our match! 

q = “aac” 
top = 0 
bot = len(bwt) 
for qc in reverse(q): 

 top = LF(top, qc) 
 bot = LF(bot, qc) 

Ferragina,	  Paolo	  and	  Manzini,	  Giovanni.	  "OpportunisAc	  data	  structures	  with	  applicaAons."	  	  
FoundaAons	  of	  Computer	  Science,	  2000.	  Proceedings.	  41st	  Annual	  Symposium	  on.	  IEEE	  (2000)	  



FM Index for Exact Matching 

Track a top and bottom index 
–  These bound the remaining possible matches at 

each step 
–  If they are ever the same, there are no matches 

Here,  LF is called on the query characters  
–  “Where are the first & last qc you saw in F?” 

The end TOP index is our match! 

q = “aac” 
top = 0 
bot = len(bwt) 
for qc in reverse(q): 

 top = LF(top, qc) 
 bot = LF(bot, qc) 



FM Index 
•  How do we find this in the genome? 

•  Isn’t the count operation O(n)?   



FM Index 

•  How do we find this in the 
genome? 

1)  Can use our walk left 
algorithm to reconstruct 



FM Index 

•  How do we find this in the 
genome? 

1)  Can use our walk left 
algorithm to reconstruct 

2)  Could store the entire suffix 
array  



FM Index 

•  How do we find this in the 
genome? 

1)  Can use our walk left 
algorithm to reconstruct 

2)  Could store the entire suffix 
array  

3)  Only store certain rows of (2), 
use (1) until we get to one. 



FM Index 
•  Isn’t the count operation O(n)? 



FM Index 
•  Isn’t the count operation O(n)? 
– We again store cumulative counts for certain 

rows, for each of $ACTG 

•  Also, the reference is usually put in 
backward (or both forward and backward) 



Beyond? 
•  Read-mapping is limited by  
–  the reference genome assembly 
– exact matching 

•  So, why not assemble each time? 



De Novo Assembly 
•  Overlap-Layout-Consensus 
•  De Bruijn Graphs 



Overlap-Layout-Consensus 
•  Overlap 
– Compute overlap score of all reads 

•  Layout 
– Create a graph where nodes are a read, edges 

are overlaps between reads 
– Find their “layout” by finding a Hamiltonian path 

through the graph 
•  Consensus 
– Find the consensus sequence by reading nodes 

along the path 





De Bruijn Graphs 
•  Break reads into k-mers 
•  Each node in the graph is a k-mer 
•  Connect an edge to the next k-mer found in 

the read 
•  Find a Eulerian path 



De Novo Assembly 
•  Confounded by repeats 
–  repeats are collapsed in these representations 
– may have many ways in and out of these graph 

regions. 
 



Further beyond 
•  Newer sequencing techniques 
– Nanopore sequencing 
– Single cell sequencing 

•  Downstream analysis issues 
– How do we compare genomes? 
– How do we store them? 

•  Improve the reference model  



Further beyond 

•  Downstream 
analysis issues 
– How do we compare 

genomes? 
– How do we store 

them? 

•  Improve the 
reference model  

h;ps://en.wikipedia.org/wiki/1000_Genomes_Project#/media/
File:GeneAc_VariaAon.jpg	  



 

Thank you! 
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Structural Variant Discovery 


