Statement

Let $ {\mathbb{K}}$ be a field and let $ m \in {\mbox{${\mathbb{K}}$}}[x]$ be a polynomial of degree $ d \geq 2$ . We aim at computing in $ {\mbox{${\mathbb{K}}$}}[x] / \langle m \rangle$ as fast as possible. Let $ {\ell} \in {\mbox{${\mathbb{K}}$}}[x]$ be another polynomial with degree strictly less than $ d$ and such that $ {\ell}$ and $ m$ are relatively prime. Let $ u, v \in {\mbox{${\mathbb{K}}$}}[x]$ such that

$\displaystyle u \, {\ell} + v \, m = 1, \ \ {\deg}(u) < {\deg}(m), \ \ {\rm and} \ \ {\deg}(v) < {\deg}( {\ell} ).$    

We consider the application $ {\Phi}$ from $ {\mbox{${\mathbb{K}}$}}[x] / \langle m \rangle$ to itself mapping $ \overline{a}$ to $ \overline{{\ell} a}$ . We shall see that $ \overline{u} {\Phi}(\overline{a}) {\Phi}(\overline{b})$ can be computed in $ 3 M(d) + O(d) $ operations in $ {\mathbb{K}}$ for a suitable choice of $ {\ell}$ . For $ \overline{a}, \overline{b} \in {\mbox{${\mathbb{K}}$}}[x] / \langle m \rangle$ define $ {\alpha} = {\Phi}(\overline{a})$ and $ {\beta} = {\Phi}(\overline{b})$ . Then,

Marc Moreno Maza
2008-03-18