Elements of correction

$ (1)$
Define:

$\displaystyle f = f_m x^m + \cdots + f_1 x + f_0 \ \ {\rm and} \ \ g = x^n + \cdots + g_1 x + g_0.$ (1)

The following discussion is meant to give upper bounds for the quotient $ q$ and the remainder $ r$ in the division-with-remainder of $ f$ by $ g$ . We follow the classical algorithm (not the fast one) as stated at the beginning of the chapter on fast division.

Observe that the quotient $ q$ has degree $ m -n$ , so we define:

$\displaystyle q = q_{m-n} x^{m-n} + \cdots + q_1 x + q_0.$ (2)

Since $ g$ is monic, we clearly have:

$\displaystyle q_{m-n} = f_m.$ (3)

Let $ r_0 = f$ be the ``initial'' remainder and let $ C_0 = B_f$ be the largest absolute value of a coefficient in $ r_0$ . During the first iteration $ r_0$ is replaced by

$\displaystyle r_1 = r_0 - q_{m-n} g x^{m-n}.$ (4)

The ``intermediate'' remainder $ r_1$ is either null or $ C_1$ the largest absolute value of a coefficient in $ r_1$ satisfies:

$\displaystyle C_1 \leq C_0 + C_0 B_g = C_0 (1 + B_g)$ (5)

If $ r_1 \neq 0$ , then the next intermediate remainder $ r_2$ satisfies

$\displaystyle r_2 = r_1 - {\rm lc}(r_1) g x^{{\deg}(r_1) - n}$ (6)

where $ {\rm lc}(r_1)$ is the leading coefficient of $ r_1$ and, also, the next non-zero coefficient in $ q$ . If $ r_2 \neq 0$ , then $ C_2$ the largest absolute value of a coefficient in $ r_2$ satisfies:

$\displaystyle C_2 \leq C_1 + C_1 B_g \leq C_0 (1 + B_g)^2.$ (7)

Then, an easy induction leads to:

$\displaystyle B_q \leq B_f (1 + B_g)^{m-n}.$ (8)

Observe that an upper bound for the absolute value of a coefficient in $ r$ is rather

$\displaystyle B_r \leq B_f (1 + B_g)^{m-n+1}.$ (9)

$ (2)$
We make a preliminary observation. Let $ m \geq 1$ be an odd integer such that we have

$\displaystyle m/2 > B_f (1 + B_g)^{m-n+1}.$ (10)

Note that this implies

$\displaystyle m/2 > B_f, \ m/2 > B_g \ \ {\rm and} \ \ m/2 > B_q.$ (11)

We represent the elements of $ {\mbox{${\mathbb{Z}}$}}/m{\mbox{${\mathbb{Z}}$}}$ with the symmetric range $ -\frac{m-1}{2} \cdots \frac{m-1}{2}$ . Let $ {\Psi}_m$ be the corresponding canonical ring homomorphism from $ {\mbox{${\mathbb{Z}}$}}[x]$ to $ {\mbox{${\mathbb{Z}}$}}/m{\mbox{${\mathbb{Z}}$}}[x]$ . In $ {\mbox{${\mathbb{Z}}$}}[x]$ we have:

$\displaystyle f = q g + r \ \ {\rm and} \ \ {\deg}(r) < {\deg}(g).$ (12)

This implies the following in $ {\mbox{${\mathbb{Z}}$}}/m{\mbox{${\mathbb{Z}}$}}[x]$ :

$\displaystyle {\Psi}_m(f) = {\Psi}_m(q) {\Psi}_m(g) + {\Psi}_m(r) \ \ {\rm and} \ \ {\deg}({\Psi}_m(r)) < {\deg}({\Psi}_m(g)).$ (13)

Observe that we have:

$\displaystyle {\Psi}_m(f) = f, \ {\Psi}_m(g) = g, \ {\Psi}_m(q) = q \ \ {\rm and} \ \ {\Psi}_m(r) = r.$ (14)

We shall describe now how to compute $ {\Psi}_m(q)$ and $ {\Psi}_m(r)$ , and thus $ q$ and $ r$ .

Consider $ p_1 < \cdots < p_r$ odd primes such that their product $ m$ satisfies (10). For all $ 1 \leq i \leq r$ , let $ f_{p_i}$ , $ g_{p_i}$ , $ q_{p_i}$ and $ r_{p_i}$ be the respective images of $ f$ , $ g$ , $ q$ and $ r$ in $ {\mbox{${\mathbb{Z}}$}}/p_i{\mbox{${\mathbb{Z}}$}}[x]$ . Thus, for all $ 1 \leq i \leq r$ , we have in $ {\mbox{${\mathbb{Z}}$}}/p_i{\mbox{${\mathbb{Z}}$}}[x]$

$\displaystyle f_{p_i} = g_{p_i} q_{p_i} + r_{p_i} \ \ {\rm and} \ \ {\deg}(r_{p_i}) < {\deg}(g_{p_i}).$ (15)

By virtue of the uniqueness of the division by a monic polynomial, this implies that for all $ 1 \leq i \leq r$ , the couple $ (q_{p_i}, r_{p_i})$ is the couple quotient-remainder in the division of $ f_{p_i}$ by $ g_{p_i}$ . Applying coefficient-wise the Chinese Remaindering Algorithm (see course notes) we construct polynomials $ f_m$ , $ g_m$ , $ q_m$ and $ r_m$ in $ {\mbox{${\mathbb{Z}}$}}/m{\mbox{${\mathbb{Z}}$}}[x]$ such that

$\displaystyle f_m = g_m q_m + r_m \ \ {\rm and} \ \ {\deg}(r_m) < {\deg}(g_m).$ (16)

Moreover, the Chinese Remaindering Theorem tells us that we have:

$\displaystyle f_m = {\Psi}_m(f), g_m = {\Psi}_m(g), q_m = {\Psi}_m(q) \ \ {\rm and} \ \ r_m = {\Psi}_m(r).$ (17)

Using the preliminary remark, we conclude that $ q_m = q$ and $ r_m = r$ . This approach is interesting when fast division is available in each $ {\mbox{${\mathbb{Z}}$}}/p_i{\mbox{${\mathbb{Z}}$}}[x]$ .
To summarize the key ideas for this exercise are:

Marc Moreno Maza
2008-03-18