Exercise 2.

In the ring $ {\mbox{${\mathbb{A}}$}} = {\mbox{${\mathbb{K}}$}}[x]$ of univariate polynomials with coefficients in $ {\mbox{${\mathbb{K}}$}} = {\mbox{${\mathbb{Z}}$}}/5{\mbox{${\mathbb{Z}}$}}$ , we consider the polynomials $ f_1 = x^2 + x + 1$ , $ f_2 = x + 1$ , $ f_3 = x^3 + x^2 + x + 1$ .

For every pair $ (f_i, f_j)$ , with $ 1 \leq i < j \leq$ such that we can compute the product $ f_i f_j$ by means of the FFT-based algorithm studied in class:

  1. find a suitable primitive $ n$ -th root of unity in $ {\mbox{${\mathbb{K}}$}}$ ,
  2. compute the DFT of $ f_1$ and $ f_j$
  3. deduce the product of the polynomials $ f_i$ and $ f_j$ by means of the FFT-based algorithm studied in class

Answer 3  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 4  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 5  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 6  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Marc Moreno Maza
2008-01-31