Exercise 2.

The algorithm recalled above computes the inverse of $ f \in R[x]$ modulo $ x^{\ell}$ . Using Newton iteration step

$\displaystyle g_{i+1} \ = \ g_i - \frac{{\phi}(g_i)}{{\phi}'(g_{i})}$ (1)

derive an algorithm which, given $ f \in R[x]$ and $ {\ell} \in {\mbox{${\mathbb{N}}$}}$ , computes $ g \in R[x]$ such that $ f g^2 \equiv 1 \mod{ \ x^{\ell}}$ holds. Then, prove that the algorithm is correct.

Answer 2  
\fbox{
\begin{minipage}{13 cm}
(We just give elements of corrections.)
By analog...
...uation}
x^3 - 6 x^2 + 9 x - 4 = (x - 1)^2 ( x -4).
\end{equation}\end{minipage}}

Marc Moreno Maza
2008-01-31