Formula: the Chinese Remaindering Theorem

Let $ m$ and $ n$ be two relatively prime elements of an Euclidean domain $ R$ . (You may think of $ R = {\mbox{${\mathbb{Z}}$}}$ or $ R = {\mbox{${\mathbb{Q}}$}}[x]$ .) Let $ s, t \in R$ be such that $ s \, m + t \, n = 1$ . For every $ a, b \in R$ there exists $ c \in R$ such that

$\displaystyle (\forall x \in R) \ \ \ \ \ \left\{ \begin{array}{l} x \equiv a \...
...uiv b \mod{\, n} \\ \end{array} \right. \ \ \iff \ \ x \equiv c \mod{\, m \, n}$ (1)

where a convenient $ c$ is given by

$\displaystyle c \ = \ a + (b - a) \, s \, m = b + (a - b) t\, n$ (2)

Therefore, for every $ a, b \in R$ the system of equations

$\displaystyle \left\{ \begin{array}{l} x \equiv a \mod{\, m} \\ x \equiv b \mod{\, n} \\ \end{array} \right.$ (3)

has a solution.

Marc Moreno Maza
2008-01-31