(1) -> V := OVAR [x,y,z] (1) OrderedVariableList [x,y,z] Type: Domain (2) -> P := NSMP(Integer, V) (2) NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z]) Type: Domain (3) -> T := RegularChain(Integer, [x,y,z]) (3) RegularChain(Integer,[x,y,z]) Type: Domain (4) -> lp: List P := [x^2 + y + z -1, x + y^2 +z -1, x + y +z^2 -1] 2 2 2 (4) [x + y + z - 1,x + y + z - 1,x + y + z - 1] Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z]) (5) -> zeroSetSplit(lp)$T 2 (5) [{z + 2z - 1,y - z,x - z},{z,y - 1,x},{z,y,x - 1},{z - 1,y,x}] Type: List RegularChain(Integer,[x,y,z]) (6) -> )set message time on (7) -> lp: List P := [x^3 + y + z -1, x + y^3 +z -1, x + y +z^3 -1] 3 3 3 (7) [x + y + z - 1,x + y + z - 1,x + y + z - 1] Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z]) Time: 0.01 (IN) = 0.01 sec (8) -> zeroSetSplit(lp,true,true)$T [1 <3,0> -> |3|; {0}]W[2 <4,0>,<2,1> -> |6|; {0}][2 <3,1>,<2,1> -> |5|; {0}] G[2 <2,1>,<2,1> -> |4|; {0}]WW[3 <2,1>,<2,1>,<1,2> -> |5|; {0}] Gwwww[5 <3,1>,<3,1>,<3,1>,<2,1>,<1,2> -> |12|; {0}] GI[5 <2,2>,<3,1>,<3,1>,<2,1>,<1,2> -> |11|; {0}] GG[5 <1,2>,<3,1>,<3,1>,<2,1>,<1,2> -> |10|; {0}] [5 <0,3>,<3,1>,<3,1>,<2,1>,<1,2> -> |9|; {0}] [4 <3,1>,<3,1>,<2,1>,<1,2> -> |9|; {1}] WW[5 <2,2>,<2,2>,<3,1>,<2,1>,<1,2> -> |10|; {1}] [5 <1,2>,<2,2>,<3,1>,<2,1>,<1,2> -> |9|; {1}] W[5 <0,3>,<2,2>,<3,1>,<2,1>,<1,2> -> |8|; {1}] [4 <2,2>,<3,1>,<2,1>,<1,2> -> |8|; {2}] [4 <1,2>,<3,1>,<2,1>,<1,2> -> |7|; {2}] WW[4 <0,3>,<3,1>,<2,1>,<1,2> -> |6|; {2}] [3 <3,1>,<2,1>,<1,2> -> |6|; {3}] GIWWW[3 <2,2>,<2,1>,<1,2> -> |5|; {3}] [3 <1,2>,<2,1>,<1,2> -> |4|; {3}] WWW[3 <0,3>,<2,1>,<1,2> -> |3|; {3}] [2 <2,1>,<1,2> -> |3|; {4}] WWWW[2 <1,2>,<1,2> -> |2|; {4}] WWWW[2 <0,3>,<1,2> -> |1|; {4}][1 <1,2> -> |1|; {5}] WWWWW[1 <0,3> -> |0|; {5}] WwwWwWwWWwwWwWwWwWwWwWwWwwwWwWwwwwWwwwwwwwwww *** QCMPACK Statistics *** Table size: 42 Entries reused: 34 *** REGSETGCD: Gcd Statistics *** Table size: 6 Entries reused: 0 *** REGSETGCD: Inv Set Statistics *** Table size: 2 Entries reused: 0 (8) [ 7 6 5 4 3 2 {z + z + z - 2z - 2z - 2z - z - 1, 2 2 5 4 3 2 2 3 (z + z + 1)y + (z + z + z - z - z - 1)y + z + z, x + y + z - 1} , 8 7 6 5 4 3 2 3 3 {z + z + z - 2z - 2z - 2z + 5z + 5z - 3,2y + z - 1,2x + z - 1}, 2 {z - 1,y - 1,x + y}, {z,y - 1,x}, {z - 1,y,x}, {z,y,x - 1}] Type: List RegularChain(Integer,[x,y,z]) Time: 0.09 (EV) + 0.01 (OT) = 0.10 sec
Now we show how to call the AXIOM implementation of lextriangular
V := OVAR [x,y,z] (1) OrderedVariableList [x,y,z] Type: Domain Time: 0.02 (OT) = 0.02 sec P := NSMP(Integer, V) (2) NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z]) Type: Domain Time: 0.01 (IN) = 0.01 sec pack := LexTriangularPackage(Integer,[x,y,z]) (3) LexTriangularPackage(Integer,[x,y,z]) Type: Domain Time: 0 sec lp: List P := [x^2 + y + z -1, x + y^2 +z -1, x + y +z^2 -1] 2 2 2 (4) [x + y + z - 1,x + y + z - 1,x + y + z - 1] Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z]) Time: 0.07 (IN) + 0.05 (OT) + 0.03 (GC) = 0.15 sec lg := groebner(lp)$pack 2 2 2 2 4 2 6 4 3 2 (5) [x + y + z - 1,y - y - z + z,2z y + z - z ,z - 4z + 4z - z ] Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z]) Time: 0.08 (EV) + 0.01 (OT) + 0.01 (GC) = 0.10 sec lexTriangular(lg,false)$pack (6) 2 [{z + 2z - 1,(2z - 1)y + 5z - 2,x + y - 2z}, {z,y,x - 1}, {z - 1,y,x}, {z,y - 1,x}] Type: List RegularChain(Integer,[x,y,z]) Time: 0.08 (EV) + 0.01 (OT) + 0.01 (GC) = 0.10 sec lexTriangular(lg,true)$pack (7) 4 2 2 2 2 2 [{z - 4z + 4z - 1,2y + z - 1,2x + z - 1},{z ,y - y + z,x + y - 1}] Type: List RegularChain(Integer,[x,y,z]) Time: 0.02 (EV) = 0.02 sec