Let n be a positive integer and R be a primitive n-th root of unity.
h = hk xk | (17) |
hk = fi gj | (18) |
p = pk xk | (19) |
pk = fi gj | (20) |
|
(21) |
f * g fg mod xn-1 | (22) |
f = x3 + 1 and g = 2x3 + 3x2 + x + 1. | (23) |
|
(24) |
f * g = 3x3 + 4x + 2 | (25) |
DFT(f*g) = DFT(f )DFT(g) | (26) |
f * g = f g + q (xn - 1) | (27) |
|
(28) |
E : | (29) |
R[x]/xn - 1 Rn | (30) |
If R is a field, then this a special case of the Chinese Remaindering Theorem where mi = x - for i = 0 ... n - 1.