Let n be a positive integer and
R be a primitive n-th
root of unity.
fi xi and
g =
gi xi
in R[x] is the polynomial
h = hk xk |
(17) |
hk = fi gj |
(18) |
p = pk xk |
(19) |
pk = fi gj |
(20) |
|
(21) |
| f * g |
(22) |
| f = x3 + 1 and g = 2x3 + 3x2 + x + 1. | (23) |
|
(24) |
| f * g = 3x3 + 4x + 2 | (25) |
| DFT |
(26) |
| f * g = f g + q (xn - 1) | (27) |
|
(28) |
E![]() |
(29) |
| R[x]/ |
(30) |
If R is a field, then this a special case of the Chinese Remaindering Theorem
where
mi = x -
for
i = 0 ... n - 1.