|||’ Shell Programming

A A A A A A A A A A A A

Shell Scripts (1)

¢ Basically, a shell script is a text file with Unix
commands in it.

¢ Shell scripts usually begin with a #! and a shell
Nname
— For example: #!/bin/sh
— If they do not, the user's current shell will be used

¢ Any Unix command can go In a shell script

— Commands are executed in order or in the flow
determined by control statements.

¢ Different shells have different control structures
— The #! line Is very important
— We will write shell scripts with the Bourne shell (sh)

Shell Scripts (2)
¢ Why write shell scripts?

— To avoid repetition:

«|f you do a sequence of steps with
standard Unix commands over and over,
why not do it all with just one command?

— To automate difficult tasks:

+Many commands have subtle and difficult
options that you don’t want to figure out or
remember every time.

A Simple Example (1)

¢ tr abcdefghijklmnopgrstuvwxyz \
thequickbrownfxjmpsvalzydg < filel > file2

— “encrypts” filel into file2

¢ Record this command into shell script files:

— myencrypt

#!/bin/sh

tr abcdefghijkimnopgrstuvwxyz \
thequickbrownfxjmpsvalzydg

— mydecrypt

#1/bin/sh

tr thequickbrownfxjmpsvalzydg \
abcdefghijkimnopqrstuvwxyz

A Simple Example (2)

¢ chmod the files to be executable;
otherwise, you couldn’t run the scripts

obelix[3] > chmod u+x myencrypt mydecrypt

¢ Run them as normal commands:

obelix

obelix|

obelix

4] yencrypt < filel > file2
5] ¥ ./mydecrypt < file2 > file3
6]/> diff filel file3

Remember: This Is needed
when “.” Is not in the path

Bourne Shell Variables

& Remember: Bourne shell variables are
different from variables in csh and tcsh!

— Examples in sh:

PATH=% PATH:$HOME/bin Note: no space
HA=%$1

PHRASE="House on the hill"

export PHRASE Make PHRASE an
environment variable

Assigning Command Output to a Variable

¢ Using backqguotes, we can assign the
output of a command to a variable:

#!/bin/sh
files="Is
echo $files
¢ Very useful in numerical computation:
#!/bin/sh
value="expr 12345 + 54321
echo $value

Using expr for Calculations

¢ Variables as arguments:
% count=5
% count="expr $count + 1
% echo $count
6
— Variables are replaced with their values by the shell!

¢ expr supports the following operators:
— arithmetic operators: +,-,*,/,%
— comparison operators: <, <=, ==, I=, >= >
— boolean/logical operators: &, |
— parentheses: (,)
— precedence Is the same as C, Java

Control Statements

¢ Without control statements, execution
within a shell scripts flows from one
statement to the next in succession.

& Control statements control the flow of
execution in a programming language

¢ The three most common types of control
statements:
— conditionals: if/then/else, case, ...
—loop statements: while, for, until, do, ...

— branch statements: subroutine calls (good),
goto (bad)

for Loops

¢ for loops allow the repetition of a command
for a specific set of values

¢ Syntax:
for var in valuel value? ...
do
command_set
done

—command_set Is executed with each value of
var (valuel, valuez2, ...) in sequence

for Loop Example (1)

#1/bin/sh
timestable — print out a multiplication table
fortinl 23
do
forjin123
do
value="expr $i * $j°
echo -n "$value "
done
echo
done

for Loop Example (2)

#!/bin/sh
file-poke — tell us stuff about files
files="Is
for 1 in $files
do
echo -n"$i "
grep $i i
done

— FInd filenames In files in current directory

for Loop Example (3)

#!/bin/sh
file-poke — tell us stuff about files
for1in*; do
echo -n"$i "
grep $i i
done

— Same as previous slide, only a little
more condensed.

Conditionals

¢ Conditionals are used to “test” something.

— In Java or C, they test whether a Boolean variable is
true or false.

— In a Bourne shell script, the only thing you can test
IS whether or not a command is “successful”

¢ Every well behaved command returns back a
return code.

— O If It was successful
— Non-zero if it was unsuccessful (actually 1..255)

— We will see later that this 1s different from true/false
conditions in C.

Theif Statement

¢ Simple form:
If decision command 1

then
Command_set_l grep returns 0 if it finds something
f| returns non-zero otherwise
¢ Example:
If grep unix myfile >/dev/null
then
echo "It's there"
fI redirect to /dev/null so that

"Intermediate" results do not get
printed

If and else

If grep "UNIX" myfile >/dev/null
then
echo UNIX occurs in myfile
else
echo NoO!
echo UNIX does not occur in myfile
fi

If and elif

If grep "UNIX" myfile >/dev/null
then
echo "UNIX occurs in file"
elif grep "DOS" myfile >/dev/null
then
echo "Unix does not occur, but DOS does"
else
echo "Nobody is there"
fi

Use of Semicolons

¢ Instead of being on separate lines,
statements can be separated by a
semicolon (;)

— For example:

If grep "UNIX" myfile; then echo "Got It"; fi
— This actually works anywhere in the shell.
% cwd="pwd; cd $HOME; Is; cd $cwd

Use of Colon
¢ Sometimes It Is useful to have a command
which does “nothing”.

¢ The : (colon) command in Unix does nothing
#1/bin/sh

If grep unix myfile
then

else

echo "Sorry, unix was not found"
fi

The test Command — File Tests

» test —f file does file exist and Is not a directory?
» test -d file does file exist and Is a directory?
» test —x file does file exist and Is executable?
» test —s file does file exist and is longer than O bytes?
#1/bin/sh
count=0
fori1in*; do
If test —x $i; then
count="expr $count + 1
fi
done
echo Total of $count files executable.

The test Command — String Tests

¢ test —z string Is string of length 07
¢ test stringl = string2 does stringl equal string2”
& test stringl = string2 not equal?
¢ Example:
if test -z SREMOTEHOST
then

else
DISPLAY="$REMOTEHOST:0"
export DISPLAY

fi

The test Command — Integer Tests

¢ Integers can also be compared:
—Use -eq, -ne, -It, -le, -gt, -ge
¢ For example:
#1/bin/sh
smallest=10000
forin581987 3; do
If test $i -It $smallest; then
smallest=%i
fi
done
echo $smallest

Use of []

¢ The test program has an alias as [|
— Each bracket must be surrounded by spaces!
— This Is supposed to be a bit easier to read.

¢ For example:
#!/bin/sh
smallest=10000
forin581987 3; do
if [$i -It $smallest] ; then
smallest=%i
fi
done
echo $smallest

Thewhile Loop

¢ While loops repeat statements as long as
the next Unix command is successful.

¢ For example:

#1/bin/sh

=1

sum=0

while [$i -le 100]; do
sum="expr $sum + $i’
i=expr $i+ 1

done

echo The sum is $sum.

The until Loop

¢ Until loops repeat statements until the next
Unix command Is successful.

¢ For example:

#1/bin/sh

x=1

until [$x -gt 3]; do
echo x = $x
X="expr $x + 1°

done

Command Line Arguments (1)

¢ Shell scripts would not be very useful if we could
not pass arguments to them on the command
line

¢ Shell script arguments are “numbered” from left
to right
— $1 - first argument after command
— $2 - second argument after command
— ... up to $9

— They are called “positional parameters”.

Command Line Arguments (2)

¢ Example: get a particular line of a file
— Write a command with the format:
getlineno linenumber filename
#1/bin/sh
head -$1 $2 | tail -1
¢ Other variables related to arguments:
+$0 name of the command running

+3$* All the arguments (even if there are
more than 9)

+$# the number of arguments

Command Line Arguments (3)

¢ Example: print the oldest files in a directory
#! /bin/sh

oldest -- examine the oldest parts of a directory
HOWMANY=$1

shift
s -It $* | tail +2 | tail SBHOWMANY
¢ The shift command shifts all the arguments to the left
— $1 =9$2, $2 =%$3, $3 = ¥4, ...
— $1 is lost (but we have saved it in $SHOWMANY)
— The value of $# is changed ($# - 1)
— useful when there are more than 9 arguments

¢ The “tall +2” command removes the first line.

More on Bourne Shell Variables (1)

¢ There are three basic types of variables In
a shell script:

— Positional variables ...
+*$1, $2, $3, ..., $9
— Keyword variables ...

«Like $PATH, SHOWMANY, and anything
else we may define.

— Special variables ...

More on Bourne Shell Variables (2)

¢ Special variables:

— $*, $# -- all the arguments, the number of
the arguments

—$% -- the process id of the current shell

- $? -- return value of last foreground
process to finish

-- more on this one later

— There are others you can find out about with
man sh

Reading Variables From Standard Input (1)

¢ The read command reads one line of input from

the terminal and assigns it to variables give as
arguments

¢ Syntax: read varl var2 var3 ...
«+Action: reads a line of input from standard input
«+Assign first word to varl, second word to varz, ...

<« The last variable gets any excess words on the
line.

Reading Variables from Standard Input (2)

¢ Example:
%read XY Z
Here are some words as input
% echo $X
Here
% echo $Y
are
% echo $Z
some words as input

The case Statement

¢ The case statement supports multiwvay
branching based on the value of a single string.
¢ General form:
case string In
patternl)
command_set 11

pattern2)
command_set 2

eSac

case Example

#!/bin/sh

echo -n '‘Choose command [1-4] >
read reply

echo

case $reply in

"1") Use the pipe symbol “|” as a logical
date or between several choices.

"2']'3")
pwd

I|4I|)
Is Provide a default case when no
N other cases are matched.

*)

Redirection in Bourne Shell Scripts (1)

¢ Standard input is redirected the same (<).

¢ Standard output can be redirected the same (>).
— Can also be directed using the notation 1>
— For example: cat x 1> |s.txt

¢ Standard error Is redirected using the notation 2>
— For example: cat x y 1> stdout.txt 2> stderr.txt

¢ Standard output and standard error can be
redirected to the same file using the notation 2>&1

— For example: cat x y > xy.txt 2>&1

¢ Standard output and standard error can be piped
to the same command using similar notation

— For example: cat xy 2>&1 | grep text

Redirection in Bourne Shell Scripts (2)

¢ Shell scripts can also supply standard input to
commands from text embedded In the script itself.

& General form: command << word

— Standard input for command follows this line up to, bui
not including, the line beginning with word.

¢ Example:
#!/bin/sh
grep 'hello' << EOF
This is some sample text. matched and displayed.
Here is a line with hello In it.
Here is another line with hello.

No more lines with that word.
EOF

A Shell Script Example (1)

¢ Suppose we have a file called marks.txt
containing the following student grades:

091286899 90 H. White
197920499 80 J. Brown
899268899 /5 A. Green

& \We want to calculate some statistics on
the grades In this file.

A Shell Script Example (2)

#!/bin/sh

sum=0; countfail=0; count=0;

while read studenthnum grade name; do
sum="expr $sum + $grade’
count="expr $count + 1
If [$grade -1t 50]; then

countfail="expr $countfail + 1

fi

done

echo The average is expr $sum / $count .

echo $countfail students failed.

A Shell Script Example (3)

¢ Suppose the previous shell script was
saved In a file called statistics.

¢ How could we execute I1t?

¢ As usual, In several ways ...
— % cat marks.txt | statistics
— % statistics < marks.txt

¢ We could also just execute statistics and
provide marks through standard input.

