CS2209A 2017

Applied Logic for Computer Science

Lecture 4

Propositional Logic: Simplifying formulas

Instructor: Yu Zhen Xie

Review: Truth table

A	B	not A	A and B	A or B	if A then B
True	True	False	True	True	True
True	False	False	False	True	False
False	True	True	False	True	True
False	False	True	False	False	True

- "It is raining or I am a dolphin"
- "If pigs can fly, then $2+2=4$." True or False?
- "If pigs can fly, then $2+2$ =5." True or False?

Review: Special types of sentences

A	B	$\mathrm{B} \rightarrow \mathrm{A}$
True	True	True
True	False	True
False	True	False
False	False	True

- Which sentences are satisfiable?

$$
\begin{aligned}
-B & \rightarrow A, A \vee B, \\
B & \rightarrow A \vee B
\end{aligned}
$$

- Which sentence is a contradiction?
$-\mathrm{A} \wedge \neg \mathrm{A}$
- Which sentence is a tautology?
$-B \rightarrow A \vee B$

Important tautologies

- Law of the excluded middle states that $(p \vee \neg p)$ is a tautology.
- In other words, p is either true or false, everything else is excluded.
- Proof: $p \vee \neg p$ is always True.

p	$\neg p$	$p \vee \neg p$
True	False	True
False	True	True

- Consider $(\neg(p \wedge q) \vee q)$. Is this formula a tautology? Give a proof for your answer.

Review: Logical equivalence

A	B	not A	if A then B	(not A) or B
True	True	False	True	True
True	False	False	False	False
False	True	True	True	True
False	False	True	True	True

- $\neg A \vee B$ and $\mathrm{A} \rightarrow \mathrm{B}$ are equivalent.
* Two formulas F and G are logically equivalent ($F \Leftrightarrow G$ or $F \equiv G$) if they have the same value for every row in the truth table on their variables.

Review: Double negation

- Double negation
$-\neg \neg A \equiv A$
— "I do not disagree with you" = "I agree with you"
- Negation cancels negation
- Review: De Morgan's Laws
- For OR: $\neg(A \vee B) \equiv(\neg A \wedge \neg B)$
- For AND: $\neg(A \wedge B) \equiv(\neg A \vee \neg B)$
- The negation of a disjunction is the conjunction of the negations; the negation of a conjunction is the disjunction of the negations;
- Useful for simplifying negated formulas

De Morgan's laws in set theory

Simplifying formulas

- Start with the outermost connective and keep applying de Morgan's laws and double negation. Stop when all negations are on variables.
- Precedence: \neg first, then \wedge, then \vee, \rightarrow last
- Example 1: $A \wedge C \rightarrow(\neg B \vee C)$
- By $(\mathrm{F} \rightarrow G) \equiv(\neg F \vee G) \quad(*$ let $(\mathrm{A} \wedge \mathrm{C})$ be F and $(\neg B \vee C)$ be $G)$
- $A \wedge C \rightarrow(\neg B \vee C) \equiv \neg(A \wedge C) \vee(\neg B \vee C)$
- De Morgan’s law
- $\neg(A \wedge C)$ is equivalent to $(\neg A \vee \neg C)$
- So the whole formula becomes
- $\neg A \vee \neg C \vee \neg B \vee C$
- $\equiv \neg A \vee \neg B \vee \neg C \vee C \quad / / c o m m u t a t i v i t y ~$
- but $\neg C \vee C$ is always true! Now we get $\neg A \vee \neg B \vee$ True
- So the whole formula is True, a tautology.

Simplifying formulas

- $A \wedge C \rightarrow(\neg B \vee C)$
- Order of precedence: \rightarrow is the outermost, that is, the formula is of the form $\boldsymbol{F} \rightarrow \boldsymbol{G}$, where F is $(A \wedge C)$, and G is $(\neg B \vee C)$.

Simplifying formulas

- Example 2: $\neg((A \vee \neg B) \rightarrow(\neg A \wedge C))$
- $\equiv \neg(\neg(A \vee \neg B) \vee(\neg A \wedge C)) \quad / / \rightarrow$
- $\equiv \neg \neg(A \vee \neg B) \wedge \neg(\neg A \wedge C) \quad / /$ de Morgan to \vee
- $\equiv(A \vee \neg B) \wedge \neg(\neg A \wedge C) \quad / /$ double negation
- $\equiv(A \vee \neg B) \wedge(\neg \neg A \vee \neg C) \quad / /$ de Morgan to \wedge
- $\equiv(A \vee \neg B) \wedge(A \vee \neg C) \quad / /$ double negation
- Can now simplify further, if we want to.
- $\equiv A \vee(\neg B \wedge \neg C) / /$ distributivity, taking A outside the parentheses

Simplifying formulas

- Example 3: $(A \wedge \neg B) \rightarrow(A \vee B \rightarrow \neg B)$
- $\equiv \neg(A \wedge \neg B) \vee(A \vee B \rightarrow \neg B)$
$/ / \rightarrow$
- $\equiv \neg(A \wedge \neg B) \vee(\neg(A \vee B) \vee \neg B) \quad / / \rightarrow$
- $\equiv(\neg A \vee \neg \neg B) \vee(\neg(A \vee B) \vee \neg B) / /$ De Morgan to \wedge
- $\equiv(\neg A \vee B) \vee(\neg(A \vee B) \vee \neg B) \quad / / d o u b l e ~ n e g a t i o n ~$
- $\equiv \neg A \vee B \vee \neg B \vee(\neg(A \vee B)) / / a s s o c i a t i v i t y ~ \& ~ c o m m u t a t i v i t y ~$
- $\equiv \neg A \vee$ True $\vee(\neg(A \vee B)) \quad / / l a w$ of the excluded middle
- \equiv True //identity

