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distinct 
outcomes of
experiment

Probability of an Event
We first study Pierre-Simon Laplace’s classical theory of probability, which he 
introduced in the 18th century,  when he analyzed games of chance.

� We first define these key terms:
� An experiment is a procedure that yields one of a given set of possible outcomes.
� The sample space of the experiment is the set of possible outcomes.
� An event is a subset of the sample space.

Definition: If S is a finite sample space of equally likely outcomes, and E is an 
event, that is, a subset of S, then the probability of E is                   

p(E) = |E| / |S|.

� For every event E, we have 0 ≤ p(E)  ≤ 1. This follows directly from the 
definition because 0 ≤ p(E) = |E|/|S| ≤ |S|/|S| ≤ 1, since 0 ≤ |E| ≤ |S|.

Pierre-Simon Laplace
(1749-1827)



Applying Laplace’s Definition
Example: An urn contains four blue balls and five red balls. 
What is the probability that a ball chosen from the urn is blue?

Solution:  The probability that the ball is chosen is 4/9 since 
there are nine possible outcomes, and four of these produce a 
blue ball.

Example: What is the probability that when two dice are rolled, 
the sum of the numbers on the two dice is 7?

Solution:  By the product rule there are 62 = 36 possible 
outcomes. Six of these sum to 7. Hence, the probability of 
obtaining a 7 is 6/36 = 1/6. 



Applying Laplace’s Definition
Example: In a lottery, a player wins a large prize when they pick four digits that 
match, in correct order, four digits selected by a random mechanical process. 
What is the probability that a player wins the  prize? 
Solution: By the product rule there are 104 = 10,000 ways to pick four digits. 
� Since there is only 1 way to pick the correct digits, the probability of winning 

the large prize is 1/10,000 = 0.0001.

A smaller prize is won if only three digits are matched. What is the probability 
that a player wins the small prize?
Solution: If exactly three digits are matched, one of the four digits must be 
incorrect and the other three digits must be correct. For the digit that is 
incorrect, there are 9 possible choices (all except the correct one). Hence, by 
the sum rule, there a total of 36 possible ways to choose four digits that match 
exactly three of the winning four digits. The probability of winning the small 
price is 36/10,000 = 9/2500 = 0.0036.



Applying Laplace’s Definition
Example: There are many lotteries that award prizes to people 
who correctly choose a set of six numbers out of the first n
positive integers, where n is usually between 30 and 60. 

What is the probability that a person picks the correct six 
numbers out of 40?

Solution: The number of ways to choose six numbers out of 40 is 

C(40,6) = 40!/(34!6!) = 3,838,380.

Hence, the probability of picking a winning combination is          
1/ 3,838,380 ≈ 0.00000026.



Applying Laplace’s Definition
Example: What is the probability that the numbers 11, 4, 
17, 39, and 23 are drawn in that order from a bin with 50
balls labeled with the numbers 1,2, …, 50 if 
a) The ball selected is not returned to the bin.

b) The ball selected is returned to the bin before the next ball 
is selected.

Solution: Use the product rule in each case.
a) Sampling without replacement: The probability is 

1/254,251,200 since there are  P(50,5) = 50∙49∙48∙47∙46 = 
254,251,200 ways to choose the five balls.

b) Sampling with replacement: The probability is                       
1/505 = 1/312,500,000 since 505 = 312,500,000.



The Probability of Complements 

and Unions of Events
Theorem 1: Let E be an event in sample space S. The 
probability of the event = S − E, the complementary 
event of E, is given by

Proof: Using the fact that | | = |S| − |E|, 



The Probability of Complements 

and Unions of Events
Example: A sequence of 10 bits is chosen randomly. 
What is the probability that at least one of these bits is 0?

Solution: Let E be the event that at least one of the 10 bits 
is 0. Then is the event that all of the bits are 1s. The size 
of the sample space S is 210. Hence,



The Probability of Complements 

and Unions of Events
Theorem 2: Let E1 and E2 be events in the sample 
space S. Then

Proof: Given the inclusion-exclusion formula from 
Section 2.2,   |A ∪ B| = |A| + | B| − |A ∩ B|.

It follows that



Example: What is the probability that a positive integer 
selected at random from the set of positive integers not 
exceeding 100 is divisible by either 2 or 5?

Solution: Let E2 be the event that  the integer is divisible 
by  2 and E5 be the event that it is divisible 5? Then the 
event that the integer is divisible by 2 or 5 is  E2 ∪ E5  and
E2 ∩ E5 is the  event that it is divisible by 2 and 5.

It follows that: 

p(E2 ∪ E5 ) = p(E2) + p(E5 ) – p(E2 ∩ E5 )

= 50/100 + 20/100 − 10/100 = 3/5.

The Probability of Complements 

and Unions of Events



Monty Hall Puzzle
Example: You are asked to select one of the three doors to open.  
There is a large prize behind one of the doors and if you select that 
door, you win the prize. After you select a door, the game show 
host opens one of the other doors (which he knows is not the 
winning door). The prize is not behind the door and he gives you 
the opportunity to switch your selection. Should you switch? 

Solution: You should switch. The probability that your initial pick 
is correct is 1/3. This is the same whether or not you switch doors. 
But since the game show host always opens a door that does not 
have the prize, if you switch the probability of winning will be 
2/3, because you win if your initial pick was not the correct door 
and the probability your initial pick was wrong is 2/3.

1 32

(This is a notoriously confusing problem that has been the subject of much 

discussion . Do a web search to see why!)

Can use a computer simulation to confirm this.
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Section Summary
� Assigning Probabilities

� Probabilities of Complements and Unions of Events

� Conditional Probability 

� Independence

� Bernoulli Trials and the Binomial Distribution



Assigning Probabilities
Laplace’s definition from the previous section, assumes that 
all outcomes are equally likely. Now we introduce a more 
general definition of probabilities that avoids this restriction.

� Let S be a sample space of an experiment with a finite 
number of outcomes. We assign a probability p(s) to each 
outcome s, so that:

i. 0 ≤ p(s) ≤ 1     for each s ∈ S

ii.   

� The function  p from the set of all outcomes of the sample 
space  S to interval  [0,1]  is called a probability distribution.

outcome  s

p(s)



Assigning Probabilities
Example: What probabilities should we assign to the 
outcomes H (heads) and T (tails) when a fair coin is flipped?

What probabilities should be assigned to these outcomes 
when the coin is biased so that heads comes up twice as 
often as tails?

Solution:    We have p(H) = 2p(T).

Because p(H) + p(T) = 1, it follows that

2p(T) + p(T) = 3p(T) = 1.

Hence, p(T) = 1/3  and p(H) = 2/3.



Uniform Distribution
Definition: Suppose that S is a set with n elements. 
The uniform distribution assigns the probability 1/n to 
each element of S. (Note that we could have used 
Laplace’s definition here.)

Example: Consider again the coin flipping example, 
but with a fair coin. Now p(H) = p(T) = 1/2.



Probability of an Event

Definition: The probability of the event E is the sum 
of the probabilities of the outcomes in E.

� Note that now no assumption is being made about the 
distribution.  



Example
Example: Suppose that a dice is biased so that 3 appears 
twice as often as each other number, but that the other five 
outcomes are equally likely. What is the probability that an 
odd number appears when we roll this dice?

Solution: We want the probability of the event E = {1,3,5}. 
We have p(3) = 2/7 and 

p(1) = p(2) = p(4) = p(5) = p(6) = 1/7 (why?)

Hence, p(E) = p(1) + p(3) + p(5) =

1/7 + 2/7 + 1/7 = 4/7.



Probabilities of Complements and 

Unions  of Events

� Complements:                                  still holds. Since 
each outcome is in either E or      , but not both,     

� Unions:

also still holds under the new definition. 



Combinations of Events
Theorem: If E1, E2, … is a sequence of pairwise disjoint
events in a sample space S, then

see Exercises 36 and 37 for the proof



Conditional Probability
Definition: Let E and F be events with p(F) > 0. The conditional 
probability of E given F, denoted by P(E|F), is defined as:

Example: A bit string of length four is generated at random so 
that each of the 16 strings are equally likely. What is the 
probability that it contains at least two consecutive 0s, given that 
its first bit is a 0?
Solution: Let E be the event that the bit string contains at least 
two consecutive 0s, and F be the event that the first bit is a 0. 
� Since E ⋂ F = {0000, 0001, 0010, 0011, 0100}, p(E⋂F)=5/16.
� Because 8 bit strings of length 4 start with a 0, p(F) = 8/16= ½.

Hence,



Conditional Probability
Example: What is the conditional probability that a 
family with two children has two boys, given that they 
have at least one boy. Assume that each of the possibilities 
BB, BG, GB, and GG is equally likely where B represents a 
boy and G represents a girl.

Solution: Let E be the event that the family has two boys 
and let  F be the event that the family has at least one boy.  
Then   E = {BB},    F = {BB, BG, GB},    and     E ⋂ F = {BB}.

� It follows that p(F) = 3/4 and  p(E⋂F)=1/4.

Hence, 



Independence
Intuition: two events are independent if the occurrence 

of one of the events gives us no information about 
whether or not the other event will occur; that is, the 
events have no influence on each other.

Formal Definition: The events E and F are independent 
if and only if   

Note that independence of events E and F implies

p(E⋂F)  =  p(E) p(F).

p(E|F) = p(E⋂F)/p(F) = p(E)

p(F|E) = p(E⋂F)/p(E) = p(F)



Independence

Example: Suppose E is the event that a randomly generated bit 
string of length four begins with a 1 and F is the event that this 
bit string contains an even number of 1s. Are E and F
independent if the 16 bit strings of length four are equally likely? 
Solution: There are eight bit strings of length four that begin 
with a 1, and eight bit strings of length four that contain an even 
number of 1s.
� Since the number of bit strings of length 4 is 16,

� Since E⋂F = {1111, 1100, 1010, 1001}, p(E⋂F) = 4/16=1/4.

We conclude that E and F are independent, because 
p(E⋂F) =1/4 = (½) (½)= p(E) p(F) 

p(E) = p(F) = 8/16 = ½. 



Independence
Example: Assume  (as in the previous example) that 
each of the four ways a family can have two children 
(BB, GG, BG,GB) is equally likely. Are the events E, that 
a family with two children has two boys, and F, that a 
family with two children has at least one boy, 
independent?

Solution: Because E = {BB}, p(E) = 1/4.  We saw 
previously that that  p(F) = 3/4   and  p(E⋂F) = 1/4.  
The events  E and F are not independent since

p(E) p(F) = 3/16 ≠ ¼ = p(E⋂F) .



Pairwise and Mutual Independence
Definition: The events  E1, E2, …, En are pairwise independent
if and only if p(Ei⋂Ej) = p(Ei) p(Ej)     for all pairs i and j
with i ≤ j ≤ n.

The events are mutually independent if

whenever ij, j = 1,2,…., m, are integers with 

1 ≤ i1 < i2 <∙∙∙ < im ≤ n and m ≥ 2.

NOTE: mutually independent events are pairwise independent, 
but some pairwise independent events are not mutually independent.



Bernoulli Trials 

James Bernoulli
(1854 – 1705)

Definition: Suppose an experiment can have only two 
possible outcomes, e.g., the flipping of a coin or the 
random generation of a bit. 

� Each performance of the experiment is called a Bernoulli trial. 

� Often, one outcome is called a success and the other a failure. 

� If p is the probability of success and q the probability of 
failure, then p + q = 1. 

� Many problems involve determining the probability of k
successes when an experiment consists of n mutually 
independent Bernoulli trials.



Bernoulli Trials 

Example: A coin is biased so that the probability of heads 
is 2/3. What is the probability that exactly four heads 
occur when the coin is flipped seven times?

Solution:  There are 27 = 128 possible outcomes. The 
number of ways four of the seven flips can be heads is 
C(7,4). The probability of each of the outcomes is 
(2/3)4(1/3)3 since the seven flips are independent. 
Hence, the probability that exactly four heads occur is   

C(7,4) (2/3)4(1/3)3 =  (35∙ 16)/ 27 =  560/ 2187.



Probability of k Successes in n

Independent Bernoulli Trials.
Theorem 2: The probability of exactly k successes in n independent 
Bernoulli trials, with probability of success p and probability of failure 
q = 1 − p, is

C(n,k) pk qn−k

Proof: The outcome of n Bernoulli trials is an n-tuple (t1,t2,…,tn), 
where each is ti either S (success) or F (failure). The probability of each 
outcome of n trials consisting of k successes and n − k failures (in any 
given order) is  pkqn−k.  Because there are C(n,k) n-tuples of Ss and Fs 
that contain exactly k Ss, the probability of k successes is C(n,k)pkqn−k.

� We denote by b(k:n,p) the probability of k successes in n independent 
Bernoulli trials with p the probability of success. Viewed as a function 
of k,  b(k:n,p) is the binomial distribution. By Theorem 2,

b(k:n,p) = C(n,k)pkqn−k.



Probability of k Successes in n

Independent Bernoulli Trials.

k

b(k:n,p)  =  C(n,k) pk qn−k source: 
WikipediA
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� Bayesian Spam Filters



Motivation for Bayes’ Theorem
� Bayes’ theorem allows us to use probability to answer 

questions such as the following:

� Given that someone tests positive for having a particular 
disease, what is the probability that they actually do 
have the disease?

� Given that someone tests negative for the disease, what 
is the probability, that in fact they do have the disease?

� Bayes’ theorem has applications to medicine, law, 
artificial intelligence, engineering, and many diverse 
other areas.



Bayes’ Theorem
Bayes’ Theorem: Suppose that E and F are events from a 
sample space S such that p(E) ≠ 0 and p(F) ≠ 0.   Then:

� This helps when conditional probability  p(E|F)  is easier to 
estimate compared to p(F|E).

Thomas Bayes
(1702-1761)



Bayes’ Theorem
� Example: We have two boxes. The first box contains two green balls and 

seven red balls. The second contains four green balls and three red balls. 
Bob selects one of the boxes at random. Then he selects a ball from that 
box at random.  If he has a red ball, what is the probability that he 
selected a ball from the first box              ?
� Let  E be the event that Bob has chosen a red ball and  F be the event that Bob 

has chosen the first box.

� By Bayes’ theorem the probability  that Bob has picked the first box is:

Thomas Bayes
(1702-1761)



Derivation of Bayes’ Theorem
� Recall the definition of the conditional probability 

p(E|F):

� From this definition, it follows that:

,

continued →



Derivation of Bayes’ Theorem

On the last slide we showed that

continued →

,

,

Solving for p(E|F) and  for p(F|E) tells us that

Equating the two formulas 
for p(E F) shows that



Derivation of Bayes’ Theorem
On the last slide we 
showed that:

Note that  

Hence, 

since  

because                                                                    
and                                                                   

By the definition of conditional probability,  



Simple form of Bayes’ Theorem

A blue neon sign at the Autonomy Corporation, Cambridge, showing the simple 
statement of Bayes’ Theorem. 



Interpretation of the Simple Form 

of Bayes’ Theorem
� Bayes’ Theorem links the degree of belied in a 

proposition before and after accounting for evidence.

� Proposition A, Evidence B

� p(A) = prior probability (initial degree of belief in A)

� p(A|B) = posterior probability  (degree of belief in A
after having accounted for B)

� p(B|A) / p(B)   = the support provided for A by B



� Suppose someone told you they 
had a conversation with a person 
on a train

� If you knew nothing else about 
this conversation, you would 
compute the probability that this 
person was a woman as 50%

� Now, suppose you were also told 
that the person had long hair

� Bayes’ theorem can be used to 
calculate the probability that the 
person is a woman, given the 
additional knowledge we have.



� W = event that the conversation partner is a woman

� L = the conversation partner has long hair

� Suppose we know that 75% of women have long hair and 15% of men 
have long hair. These are statistics that can be directly estimated.

� What about               ?

How to solve the train problem



Applying Bayes’ Theorem 
Example: Suppose that one person in 100,000 has a 
particular  disease. There is a test for the disease that gives 
a positive result 99% of the time when given to someone 
with the disease. When given to someone without the 
disease, 99.5% of the time it gives a negative result. Find

a) the probability that a person who test positive has the 
disease.

b) the probability that a person who test negative does not 
have the disease.

� Should someone who tests positive be worried?



Applying Bayes’ Theorem 
Solution: Let D be the event that the person has the 
disease, and E be the event that this person tests 
positive. We need to compute p(D|E) from p(D), 
p(E|D), p( E | ), p(   ).

So, don’t worry too much, if your test 
for this disease comes back positive.

Can you use this formula 
to explain why the 
resulting probability is 
surprisingly small?

D

D
E



Applying Bayes’ Theorem 
� What if the result is negative?

� So, it is extremely unlikely you have the disease if you test 
negative.

So, the probability you 
have the disease if you 
test negative is



Generalized Bayes’ Theorem
Generalized Bayes’ Theorem: Suppose that E is an 
event from a sample space S and that F1, F2, …, Fn are 
mutually exclusive events such that

Assume that p(E) ≠ 0 for i = 1, 2, …, n. Then

Exercise 17 asks for the proof.



Bayesian Spam Filters
� How do we develop a tool for determining whether an email 

is likely to be spam?

� If we have an initial set  B(ad) of  spam messages and set 
G(ood) of non-spam messages.  We can use this information 
along with Bayes’ law to predict the probability that a new 
email message is spam.

� We look at a particular word w, and count the number of 
times that it occurs in B and in G; nB(w) and nG(w). 
� Estimated probability that spam email contains  w:                     

p(w) = nB(w)/|B|   

� Estimated probability that non-spam email contains w:                
q(w) = nG(w)/|G|

continued →



Bayesian Spam Filters
� Let S be the event that the message is spam, and  E  be 

the event that the message contains the word w. 

� Using Bayes’ Rule, 

Assuming that it is 
equally likely that an 
arbitrary message is 
spam and is not 
spam; i.e., p(S) = ½.

Note: If we have data on the 
frequency of spam messages, 
we can obtain a better 
estimate for p(s). 
(See Exercise 22.)

Using our 
empirical 
estimates of 
p(w) =  p(E | S)  
q(w) =  p(E |S).

r(w) estimates the probability that the 
message is spam. We can class the message 
as spam if r(w) is above a threshold.



Bayesian Spam Filters 
Example: We find that the word “Rolex” occurs in 250 
out of 2000 spam messages and occurs in 5 out of 1000 
non-spam messages. Estimate the probability that an 
incoming message is spam. Suppose our threshold for 
rejecting the email is 0.9.

Solution: p(Rolex) = 250/2000 =.0125 and                
q(Rolex) = 5/1000 = 0.005.

We class the message as spam and 
reject the email!



Bayesian Spam Filters using Multiple Words

� Accuracy can be improved by considering more than 
one word as evidence. 

� Consider the case where E1 and E2 denote the events 
that the message contains the words w1 and w2

respectively.

� We make the simplifying assumption that the events 
are independent. And again we assume that p(S) = ½. 



Bayesian Spam Filters using Multiple Words

Example: We have 2000 spam messages and 1000 non-spam 
messages. The word “stock” occurs 400 times in the spam messages 
and 60 times in the non-spam. The word “undervalued” occurs in 200 

spam messages and 25 non-spam.  

Solution:  p(stock)  = 400/2000 = .2, q(stock) = 60/1000=.06, 

p(undervalued) = 200/2000 = .1, q(undervalued) = 25/1000 = .025

If our threshold is .9, we class the message as spam and reject it. 



Bayesian Spam Filters using Multiple Words

� In general, the more words we consider, the more 
accurate the spam filter. With the independence 
assumption if we consider k words:

We can further improve the filter by considering pairs of words 
as a single block or certain types of strings. 


