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Abstract. Many real-world datasets for machine learning and data mining 

contain missing values, and much previous research regards it as a problem, 

and attempts to impute missing values before training and testing. In this 

paper, we study this issue in cost-sensitive learning that considers both test 

costs and misclassification costs. If some attributes (tests) are too expensive 

in obtaining their values, it would be more cost-effective to miss out their 

values, similar to skipping expensive and risky tests (missing values) in 

patient diagnosis (classification). That is, “missing is useful” as missing 

values actually reduces the total cost of tests and misclassifications, and 

therefore, it is not meaningful to impute their values. We discuss and 

compare several strategies that utilize only known values and that “missing 

is useful” for cost reduction in cost-sensitive decision tree learning.    
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1. Introduction 

Machine learning and data mining reply heavily on a large amount of data to build 

learning models and make predictions, and thus, the quality of data is ultimately 

important. Though there is no formal measure on the quality of data, it can be intuitively 

quantified by the inclusion of relevant attributes, the errors in attribute values, and the 

amount of missing values in datasets.  This paper studies the issue of missing attribute 

values in training and test datasets.  

Indeed, many real-world datasets contains missing values, and it is often regarded 

as a difficult problem to cope with. Sometimes values are missing due to unknown 

reasons, or errors and omissions when data are recorded and transferred. As many 

statistical and learning methods cannot deal with missing values directly, examples with 

missing values are often deleted. However, deleting cases can result in a loss of a large 

amount of valuable data. Thus much previous research has focused on filling or 

imputing the missing values before learning and testing is applied to.    

In this paper, we study missing data in cost-sensitive learning in which both 

misclassification costs and test costs are considered. That is, there is a known cost 

associated with each attribute (variable or test) when obtaining its values. This is true in 

most real-world application where it costs money to obtain new information. For 

example, in medical diagnosis, it costs money (to the patient, lab, or health insurance) to 

request blood tests, X-ray, or other types of tests, some of which can be quite expensive 

and even risky to patient life (which can also be converted to cost). Doctors often have 

to balance the cost effectiveness of the tests and the accuracy of the diagnosis 

(prediction) to decide what tests should be performed. That is, if a test is too expensive 

compared to the potential reduction in misclassification cost, it is desirable to skip the 



test. In other words, if the goal is to minimize the total cost of tests and 

misclassifications, some attribute values should be missing, and doctors did not need to 

know the missing values in their diagnosis (prediction or classification).  

Thus, cost-sensitive learning algorithms should make use of only known values. Of 

course, the learners may not know exactly how the known values were acquired – were 

all of them necessary for prediction? In any case, we can assume that the known values 

may be useful for prediction, but the unknown values are certainly not. Thus, under 

cost-sensitive learning, there is no need to impute values of any missing data, and the 

learning algorithms should make use of only known values and that “missing is useful” 

to minimize the total cost of tests and misclassifications.   

The rest of the paper is organized as follows. In Section 2 we review previous 

techniques for dealing with missing values, and a recent cost-sensitive decision tree 

algorithm based on which we will discuss our missing-value strategies. We will discuss 

and compare four missing-value strategies that utilize only known data in Section 3. We 

experimentally compare the four strategies using real-world datasets in Section 4. Our 

conclusions and future work occupy Section 5.  



2. Review of Previous Work 

The issue of missing values (or missing data) has been studied extensively in the 

statistical and machine learning literature. According to the missing data mechanisms, 

statisticians have identified three classes of missing data [16]: missing completely at 

random (MCAR), missing at random (MCR), and not missing at random (NMAR). 

MCAR is when the probability of missing a value is the same for all variables; MCR is 

when the probability of missing a value is only dependent on other variables; and 

NMAR is when the probability of missing a value is also dependent on the value of the 

missing variable. MCR has received most attentions, for which various “imputation” 

methods have been designed to predict the missing values before building models. In 

machine learning, the missing value issue has been dealt with mostly in decision tree 

learning and rule learning. Various imputation methods have also been tried, such as 

imputation by the most common value [6], clustering [7], and other learning models [2]. 

In C4.5 [19, 20] a different approach is used in which a test example with missing 

values is distributed into branches probabilistically (see Section 3.4). Comparison of 

various imputation methods has also been published [15]. The approaches we discuss in 

this paper do not impute any missing values, as it is regarded as unnecessary for cost-

sensitive learning that also considers the test costs.   

This paper deals with missing values in cost-sensitive learning. Turney [22] 

presents an excellent survey on different types of costs in cost-sensitive learning, among 

which misclassification costs and test costs are singled out as most important. Much 

work has been done in recent years on non-uniform misclassification costs (alone), such 

as [9, 10 and 14]. Some previous work, such as [18, 21], considers the test cost alone 

without incorporating misclassification cost, which is obviously an oversight. A few 



researchers [5, 13, 23, 24] consider both misclassification and test costs, but their 

methods are less computationally efficient as our approach is based on decision trees. 

Ling et al. [17] propose a decision-tree learning algorithm that uses minimum total cost 

of tests and misclassifications as the attribute split criterion, and it is the basis of the 

four missing-value strategies to be presented in Section 3. Basically, given a set of 

training examples, the total cost without further splitting and the total cost after splitting 

on an attribute can be calculated, and the difference of the two is called cost reduction. 

The attribute with the maximum, positive cost reduction is chosen for growing the tree. 

All examples with missing values of an attribute stay at the internal node of that 

attribute. The method produces decision trees with the minimal total cost of tests and 

misclassifications on the training data [17].    

In the next Section we will discuss several different missing-value strategies, all of 

which use the maximum cost reduction strategy described above to build cost-sensitive 

decision trees.  

3. Dealing with Missing Values in Cost-sensitive Decision Trees 

As we discussed in the Introduction, in cost-sensitive learning which attempts to 

minimize the total cost of tests and misclassifications, missing data can be useful for 

cost reduction, and imputing missing values should be unnecessary. Thus, cost-sensitive 

decision tree learning algorithms should utilize only known values. In the following 

subsections we will describe four such missing-value techniques. These strategies have 

been proposed previously but their performance in cost-sensitive learning has not been 

studied. In Section 4 we will perform empirical experiments to compare the four 

strategies on real-world datasets by the total cost.  



3.1 The Known Value Strategy   

The first tree building and test strategy for “missing is useful” is called the Known 

Value Strategy. It utilizes only the known attribute values in the tree building for each 

test example. For each test example, a new (and probably different) decision tree is built 

from the training examples with only those attributes whose values are known in the test 

example. That is, the new decision tree only uses attributes with known values in the 

test example, and thus, when the tree classifies the test example, it will never encounter 

any missing values.  

The Known Value Strategy was proposed in [17] but its ability of handling 

unknown values was not studied. Clearly, the strategy utilizes all known attributes and 

avoids any missing data directly. It is a lazy tree method [12] where a tree is built 

during test process. The main drawback of the Known Value Strategy is its relatively 

high computation cost as different trees may be built for different test examples. This is 

usually not a problem as the tree building process is very efficient. In addition, we can 

save frequent trees and use them directly in testing for test examples with the same 

subsets of known attributes, because decision trees for the same subsets of known 

attributes are the same. We can use space to trade-off the speed if necessary.  

3.2  The Null Strategy  

As values are missing for a certain reason – unnecessary and too expensive to test – it 

might be a good idea to assign a special value, often called “null” in databases [8], to 

missing data. The null value is then treated just as a regular known value in the tree 

building and test processes. This strategy has also been proposed in machine learning 

[1], but its ability in cost-sensitive learning has not been studied.  



One potential problem with the Null Strategy is that it does not deliberately utilize 

the original known values, as missing values are treated as equally as a known value. 

Another potential drawback is that there might be more than one situation where values 

are missing. Replacing all missing values by one value (null) may not be adequate. In 

addition, subtrees can be built under the “null” branch, suggesting oddly that the 

unknown is more discriminating than known values. The advantage of this strategy is its 

simplicity and high efficiency compared to the Known Value Strategy, as only one 

decision tree is built for all test examples.  

3.3 The Internal Node Strategy  

 This strategy, as proposed in [17] and reviewed in Section 2, keeps examples with 

missing values in internal nodes, and does not build branches for them during tree 

building. When classifying a test example, if the tree encounters an attribute whose 

value is unknown, then the class probability of training examples falling at the internal 

node is used to classify it. As unknown values are dealt with by internal nodes, we call 

this strategy the Internal Node Strategy.  

As there might be several different situations where values are missing, leaving 

the classification to the internal nodes may be a natural choice. This strategy is also 

quite efficient as only one tree is built for all test examples. 

3.4 The C4.5 Strategy  

C4.5 [19, 20] does not impute missing values explicitly, and it is shown to be quite 

effective [4]. Here C4.5’s missing-value strategy is applied directly in cost-sensitive 

trees. During training, an attribute is chosen by the maximum cost reduction discounted 

by the probability of missing values of that attribute. During testing, a test example with 



missing value is split into branches according to the portions of training examples 

falling into those branches, and goes down to leaves simultaneously. The class of the 

test example is the weighted classification of all leaves.  

4. Experiment Comparisons 

In this section we will compare the four missing-value strategies discussed in Section 3. 

We start with a description of the datasets used in the experiments.   

4.1. Datasets  

 
We choose five real-world datasets from UCI Machine Learning Repository [3] 

compare the four missing-value strategies discussed earlier. These datasets are chosen 

because they have at least some discrete attributes, binary class, and a good number of 

examples. The original datasets have only a few missing values and we will select 

values to be missing (see later) to simulate different situations with missing values. The 

numerical attributes in the datasets are discretized first using minimal entropy method 

[11] as the cost-sensitive decision tree learning can currently only deal with discrete 

attributes. This limitation can be moved easily. The datasets are listed in Table 1.  

Table 1. Datasets used in the experiments.  

 No. of 
Attributes

No. of 
Examples Class distribution (N/P) 

Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357

 



The five original datasets do not have test costs and misclassification costs, so we 

simply make assumptions on the costs. We assume that test costs and misclassification 

costs are based on the same unit, such as US dollars. We randomly assign random 

numbers between 0 and 100 to each attribute as test costs. We also assign 200 for false 

positive, and 600 for false negative misclassification costs. The cost of true positives 

and true negatives is set to 0. These assumptions are reasonable as attributes do have 

some costs in real world, and we compare the four missing-value strategies based on the 

same test and misclassification costs.  

4.2. Comparing the Four Missing-value Strategies 

To simulate missing values in datasets, we randomly select certain percentages (20%, 

40%, 60%, and 80%) of attribute values in the whole dataset to be missing, and those 

missing values are distributed into each attribute proportional to its cost, as more 

expensive attributes usually have more missing values. Each dataset is then split into 

training and test sets using 10-fold cross validation (thus test sets also have the same 

percentages of missing values). For each split, a decision tree is built from the training 

dataset, and is applied to the test examples, using the Null Strategy, the Internal Node 

Strategy, and the C4.5 Strategy. For the Know Value Strategy, a lazy tree is built for 

each test example.  

The performance of the four missing-value strategies is measured by the average 

total cost of tests and misclassifications of test examples in the 10-fold cross-validation. 

Here the test cost is the total cost of the tests (attributes) in actually classifying test 

examples. That is, it is the “effective” test cost, not the sum of test costs of known 

attributes in test examples. As we discussed in Section 1, some tests may be 

unnecessary for prediction, as doctors may subscribe more tests than needed for 



diagnosis. Therefore we use the “effective” test cost to better measure each strategy’s 

actual performance. The misclassification cost is calculated as usual: if the prediction is 

correct, the misclassification cost is 0; otherwise, it is either the false positive cost or 

false negative cost, depending on the true class of the test examples. Table 2 lists the 

average total cost with different missing-value strategies under different percentages of 

missing values in the datasets. Figures 1 (a) to (e) illustrate the results of Table 2 

visually.  

 
 20% 40% 60% 80% 
The Ecoli Dataset 
The Known Value Strategy 135.1 144.5 134.2 125.8 
The Null Strategy 28.3 33.9 41.4 42.5 
The Internal Node Strategy 33.2 48.6 53.5 62.3 
The C4.5 Strategy 35.0 42.5 58.9 72.6 
The Breast Dataset 
The Known Value Strategy 67.6 91.9 111.3 116.2 
The Null Strategy 53.3 61.4 69.8 74.2 
The Internal Node Strategy 51.0 59.6 63.5 77.3 
The C4.5 Strategy 52.2 57.8 72.6 71.4 
The Heart Dataset 
The Known Value Strategy 146.6 126.0 98.2 121.9 
The Null Strategy 90.3 88.6 103.7 98.8 
The Internal Node Strategy 86.6 85.3 83.2 88.2 
The C4.5 Strategy 88.2 87.6 83.2 88.9 
The Thyroid Dataset 
The Known Value Strategy 169.4 153.7 138.9 108.5 
The Null Strategy 66.6 72.7 76.1 73.3 
The Internal Node Strategy 64.4 70.7 71.8 71.7 
The C4.5 Strategy 64.4 72.3 90.5 72.4 
The Australia Dataset 
The Known Value Strategy 174.2 143.0 106.3 107.4 
The Null Strategy 115.3 99.2 121.0 113.1 
The Internal Node Strategy 97.1 90.7 94.4 96.8 
The C4.5 Strategy 98.1 94.0 109.4 96.2 

 
We can draw the following interesting conclusions from the results. First of all, 

the Known Value Strategy (KV) is almost always the worst. This is because deleting 



attributes with missing values in the test example loses useful information in the 

datasets. Thus, this strategy should be avoided in the future. Second, in only one dataset 

(Ecoli) the Null Strategy is slightly better than others; in other datasets, it is either 

similar (in Breast and Thyroid) or worse (in Heart and Australia). This shows that the 

Null Strategy, although very simple, is often not suitable. Third, the Internal Node 

Strategy is often comparable with the C4.5 Strategy (in Ecoli, Breast, and Heart) and is 

better than C4.5 in Thyroid and Australia. This indicates that overall the Internal Node 

Strategy is better than the C4.5 Strategy. Thus, we can conclude from our experiments 

that the Internal Node Strategy is the best, followed closely by the C4.5 Strategy, and 

followed by the Null Strategy. The Known Value Strategy is the worst.  

It might be slightly counterintuitive why the C4.5 Strategy, which obtains 

weighted classifications from leaves, is not better than the Internet Node Strategy that 

uses the internal node directly. This is because when it weighs leave’s classifications, 

there is a loss of information. If it weighs the leaves’ probabilities, it can be shown 

easily that the result is equivalent the class probability in the internal node in the 

Internal Node Strategy. Thus, the Internal Node Strategy is better than the C4.5 

Strategy.  
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Figures 1 (a) Total costs for Ecoli. In this and the following figures, “KV” stands 

for the Known Value Strategy, “NULL” for the Null Strategy, “Internal” for the Internal 

Node Strategy, and “C4.5” for the C4.5 Strategy.  
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Figures 1 (b) Total costs for Breast 
 

80

100

120

140

160

20 40 60 80

Percentage of Missing Data

To
ta

l C
os

t

KV NULL Internal C4.5

 
Figures 1 (c) Total costs for Heart 
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Figures 1 (d) Total costs for Thyroid 

 

80

100

120

140

160

180

20 40 60 80

Percentage of Missing Data

To
ta

l C
os

t

KV NULL Internal C4.5

 
Figures 1 (e) Total costs for Australia 

5 Conclusions and Future Work  

Missing values are traditionally regarded as a tough problem, and must be imputed 

before learning is applied. In this paper we break away from this tradition, and argue 

that in cost-sensitive learning that also considers test costs, it is actually desirable to 

have missing values to reduce the total cost of tests and misclassifications. Thus, cost-

sensitive decision tree learning algorithms would only need the known values, and take 

advantage of “missing is useful” for cost reduction. We compare four such strategies, 

and conclude that the Internet Node Strategy, originally proposed in [17], is the best. In 



our Future work, we plan to apply those strategies to datasets with real costs and 

missing values.  
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