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Linear Congruences
Definition: A congruence of the form                          

ax ≡ b (mod m),
where m is a positive integer, a and b are integers, and x is a variable, is 
called a linear congruence.

 The solutions to a linear congruence ax ≡ b (mod m) are  all integers x
that satisfy the congruence.

Definition: An integer ā such that āa ≡ 1 (mod m) is said to be an 
inverse of a modulo m.

Example:  5 is an inverse of 3 modulo 7 since 5∙3 = 15 ≡ 1 (mod 7) 

 One method of solving linear congruences makes use of an inverse ā,  
if it exists. Although we can not divide both sides of the congruence by 
a, we can multiply by ā to solve for x. Indeed, 

ax ≡ b (mod m)    āax ≡ āb (mod m)  x ≡ āb (mod m)
Th. 5 (sec 4.1) since āa = 1 + km (Th. 4 in sec 4.1)



Inverse of a modulo m
 The following theorem guarantees that an inverse of a modulo m exists 

whenever a and m are relatively prime, that is when gcd(a,m) = 1.

Theorem 1: If a and m are relatively prime integers and m > 1, then an 
inverse of a modulo m exists. Furthermore, this inverse is unique 
modulo m (that is, there is a unique positive integer ā less than m that is an inverse of a 
modulo m and every other inverse of a modulo m is congruent to ā modulo m).   

Proof:  Since gcd(a,m) = 1, by Bezout’s Theorem, there are integers  s and t
such that   sa + tm = 1. 
 Hence, tm = 1 – sa.  
 Therefore, m divides 1 – sa
 According to the definition of congruence,  sa ≡ 1 (mod m)
 Consequently, s is an inverse of a modulo m.
 The uniqueness of the inverse is Exercise 7.



Finding Inverses
 The (extended) Euclidean algorithm and Bézout coefficients 

gives us a systematic approaches to finding inverses. 

Example: Find an inverse of 3 modulo 7.

Solution: Because gcd(3,7) = 1, by Theorem 1, an inverse of 
3 modulo 7 exists. 

 Using the Euclidian algorithm:  7 = 2∙3 + 1.

 From this equation, we get  −2∙3 + 1∙7 = 1. 
(That is, −2  and 1 are Bézout coefficients of 3 and 7. )

 Hence, −2∙3 ≡ 1 (mod 7)  and −2 is an inverse of 3 modulo 7. 

 Also every integer congruent to −2 modulo 7 is an inverse of 3 
modulo 7, i.e., 5, −9, 12, etc.



Finding Inverses
Example: Find an inverse of 101 modulo 4620.

Solution: First use the Euclidian algorithm to show that  
gcd(101,4620) = 1. 

4620 = 45∙101 + 75
101 = 1∙75 + 26
75 = 2∙26 + 23
26 = 1∙23 + 3
23 = 7∙3 + 2
3 = 1∙2 + 1
2 = 2∙1

Since the last nonzero 
remainder is 1, 
gcd(101,4260) = 1

1 = 3 − 1∙2
1 = 3 − 1∙(23 − 7∙3) = − 1 ∙23 + 8∙3
1 = −1∙23 + 8∙(26 − 1∙23) = 8∙26 − 9 ∙23
1 = 8∙26 − 9 ∙(75 − 2∙26 )= 26∙26 − 9 ∙75
1 = 26∙(101 − 1∙75) − 9 ∙75 

= 26∙101 − 35 ∙75
1 = 26∙101 − 35 ∙(4620 − 45∙101) 

= − 35 ∙4620 + 1601∙101

Working Backwards to find Bézout coefficients 

Bézout coefficients for 4620 and 101 are:
− 35 and 1601

1601 is an inverse of 
101 modulo 4620

Also, -35 is an inverse 
of 4620 modulo 101



Using Inverses to Solve Congruences
 We can solve the congruence   ax ≡ b (mod m) by multiplying both sides by ā.

Example: What are the solutions of the  congruence 3x ≡ 4 (mod 7) ?

Solution:  First, gcd(3,7) = 1 and we found that −2 is an inverse of 3 modulo 7 
(two slides back). We multiply both sides of the congruence by −2 giving

−2  ∙ 3x  ≡ −2 ∙ 4 (mod 7).

Because  −6 ≡ 1 (mod 7), it follows that if x is a solution then 

x ≡ −8 (mod 7)     or    x ≡ 6 (mod 7)             since 6 ≡ −8 (mod 7) 

To verify this solution, assume arbitrary x  s.t. x ≡ 6 (mod 7). By Theorem 5 of 
Section 4.1, it follows that 3x ≡ 3 ∙ 6 ≡ 18 ≡ 4 (mod 7) which shows that all 
such x satisfy the congruence above. 

The solutions are the integers x such that x ≡ 6 (mod 7), 

namely,    6, 13, 20 … and  −1, − 8, − 15 …



System of Linear Congruences
 The Chinese Remainder Theorem: let m1 ,m2 ,…,mn be 

pairwise relatively prime integers greater than one and 
a1 ,a2 ,…,an be arbitrary integers. Then, system

x ≡ a1 (mod m1 )

x ≡ a2 (mod m2 )

……

x ≡ an (mod mn )

has a unique solution modulo m= m1∙ m2∙ ∙ ∙ mn

easy to solve (see text)



Nonlinear Congruences

 Discrete logarithm of   y modulo  p to the base  r:
find all  x such that   r x ≡   y (mod p)

hard to solve
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Hashing Functions
Definition: A hashing function h assigns memory location h(k) to the record that has k as its key.

 A common hashing function is  h(k) = k mod m, where m is the number of memory locations. 
 Because this hashing function is onto, all memory locations are possible.

Example: Let h(k) = k mod 111. This hashing function assigns the records of customers with social 
security numbers as keys to memory locations in the following manner:

h(064212848) = 064212848 mod 111 = 14
h(037149212) = 037149212 mod 111 = 65

h(107405723) = 107405723 mod 111 = 14, but since location 14 is already occupied, the record is assigned to  
the next available position, which is 15.

 The hashing function is not one-to-one as there are many more possible keys than memory 
locations.  When more than one record is assigned to the same location, we say a collision occurs.  
Here a collision has been resolved by assigning the record to the first free location.

 For collision resolution, we can use a  linear probing function:                                         
h(k,i) = (h(k) + i) mod m, where i runs from 0 to m − 1.

 There are many other methods of handling with collisions (later CS course).



Pseudorandom Numbers
 Randomly chosen numbers are needed for many purposes, 

including computer simulations. 

 Pseudorandom numbers are not truly random since they are 
generated by systematic methods. 

 The linear congruential method is one commonly used procedure 
for generating pseudorandom numbers. 

 Four integers are needed: the modulus m, the multiplier a, the 
increment c, and seed x0, with    2 ≤ a < m, 0 ≤ c < m, 0 ≤ x0 < m. 

 We generate a sequence of pseudorandom numbers {xn} with        
0 ≤ xn < m for all n, by successively using the recursive function

xn+1 = (axn + c) mod m.



Pseudorandom Numbers
 Example: Find the sequence of pseudorandom numbers generated by the linear congruential 

method with modulus m = 9, multiplier a = 7, increment c = 4, and seed x0  = 3.
 Solution: Compute the terms of the sequence by successively using the congruence 

xn+1 = (7xn + 4) mod 9 with x0  = 3.

x1 = 7x0 + 4 mod 9 = 7∙3 + 4 mod 9 = 25 mod 9 = 7,
x2 = 7x1 + 4 mod 9 = 7∙7 + 4 mod 9 = 53 mod 9 = 8,
x3 = 7x2 + 4 mod 9 = 7∙8 + 4 mod 9 = 60 mod 9 = 6,
x4 = 7x3 + 4 mod 9 = 7∙6 + 4 mod 9 = 46 mod 9 = 1,
x5 = 7x4 + 4 mod 9 = 7∙1 + 4 mod 9 = 11 mod 9 = 2,
x6 = 7x5 + 4 mod 9 = 7∙2 + 4 mod 9 = 18 mod 9 = 0,
x7 = 7x6 + 4 mod 9 = 7∙0 + 4 mod 9 = 4 mod 9 = 4,
x8 = 7x7 + 4 mod 9 = 7∙4 + 4 mod 9 = 32 mod 9 = 5,
x9 = 7x8 + 4 mod 9 = 7∙5 + 4 mod 9 = 39 mod 9 = 3.

The sequence generated is 3,7,8,6,1,2,0,4,5,3,7,8,6,1,2,0,4,5,3,…   
It repeats after generating 9 terms.

 Commonly, computers use a linear congruential generator with increment c = 0. This is called 
a pure multiplicative generator. Such a generator with modulus 231 − 1 and multiplier  75 = 
16,807 generates 231 − 2 numbers before  repeating. 



Check Digits: UPCs
 A common method of detecting errors in strings of digits is to add an extra 

digit at the end, which is evaluated using a function. If the final digit is  not 
correct, then the string is assumed not to be correct.

Example: Retail products are identified by their Universal Product Codes 
(UPCs). Usually these have 12 decimal digits, the last one being the check 
digit. The check digit is determined by the congruence:

3x1 + x2 + 3x3 + x4 + 3x5 + x6 + 3x7 + x8 + 3x9 + x10 + 3x11 + x12 ≡ 0 (mod 10).

a. Suppose that the first 11 digits of the UPC are 79357343104. What is the check digit?
b. Is 041331021641 a valid UPC?

Solution: 
a. 3∙7 + 9 + 3∙3 + 5 + 3∙7 + 3 + 3∙4 + 3 + 3∙1 + 0 + 3∙4 + x12 ≡ 0 (mod 10) 

21 + 9 + 9 + 5 + 21 + 3 + 12+ 3 + 3 + 0 + 12 + x12 ≡ 0 (mod 10)                
98 + x12 ≡ 0 (mod 10) 
x12 ≡ 0 (mod 10)     So, the check digit is 2.

b. 3∙0 + 4 + 3∙1 + 3 + 3∙3 + 1 + 3∙0 + 2 + 3∙1 + 6 + 3∙4 +  1 ≡ 0 (mod 10) 
0 + 4 + 3 + 3 + 9 + 1 + 0+ 2 + 3 + 6 + 12 + 1 = 44 ≢ 0 (mod 10)                
Hence, 041331021641  is not a valid UPC.



Check Digits: ISBNs
Books are identified  by an International Standard Book 
Number (ISBN-10), a 10 digit code

The first 9 digits identify the language, the publisher, and 
the book. The tenth digit is a check digit, which is 
determined by the following congruence 

Since                             and 

it is easy to show that the validity of an ISBN-10 number 
can be equivalently evaluated by checking



Check Digits: ISBNs

a. Suppose that the first 9 digits of the ISBN-10 are 007288008. What is the check digit?     
b. Is 084930149X a valid ISBN10?

Solution: 
a.         x10 ≡  1∙0 + 2∙0 + 3∙7 +  4∙2 + 5∙8 + 6∙8 + 7∙ 0 + 8∙0 + 9∙8 (mod 11).

x10 ≡  0 + 0 + 21 +  8 + 40 + 48 +  0 + 0 + 72 (mod 11). 
x10 ≡  189 ≡  2 (mod 11).         Hence,  x10 = 2.

b.          1∙0 + 2∙8 + 3∙4 +  4∙9 + 5∙3 + 6∙0 + 7∙ 1 + 8∙4 + 9∙9 + 10∙10 =
0 + 16 + 12 +  36 + 15 + 0 + 7 + 32 + 81 + 100 = 299 ≡ 2 ≢ 0 (mod 11) 

Hence, 084930149X  is not a valid ISBN-10.

 A single error is an error in one digit of an identification number and  a 
transposition error is the accidental interchanging of two digits.  Both of 
these kinds of errors can be detected by the check digit for  ISBN-10.

X is used as 
the digit 10.
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Caesar Cipher
Julius Caesar created secret messages by shifting each letter three letters forward in 
the alphabet (sending the last three letters to the first three letters.) For example, 
the letter B is replaced by E and the letter X is replaced by A. This process of 
making a message secret is an example of encryption.
Here is how the encryption process works:
 Replace each letter by an integer from Z26, that is an integer from 0 to 25 

representing one less than its position in the alphabet.
 The encryption function is f(p) = (p + 3) mod 26. It replaces each integer p in the set 

{0,1,2,…,25} by f(p) in the set {0,1,2,…,25} .
 Replace each integer p by the letter with the position p + 1 in the alphabet.

Example: Encrypt the message “MEET YOU IN THE PARK” using the Caesar cipher.
Solution: Write with numbers in Z26 : 12 4 4 19 24 14 20 8 13 19 7 4  15 0 17 10.

Now replace each of these numbers p by f(p) = (p + 3) mod 26.
15 7 7 22    1 17 23 11 16  22 10 7 18 3 20 13.

Translating the numbers back to letters produces the encrypted message
“PHHW  BRX  LQ  WKH  SDUN.”

A B C D  E F  G H  I   J  K   L  M  N  O  P   Q  R   S   T   U   V   W  X    Y   Z
0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25



Caesar Cipher
 To recover the original message, use f−1(p) = (p−3) mod 26. 

So, each letter in the coded message is shifted back three 
letters in the alphabet, with the first three letters sent to 
the last three letters. This process of recovering the original 
message from the encrypted message is called decryption.

 The Caesar cipher is one of a family of ciphers called shift 
ciphers. Letters can be shifted by an integer k, with 3 being 
just one possibility. The encryption function is

f(p) = (p + k) mod 26

and the decryption function is

f−1(p) = (p−k) mod 26

The integer k is called a key.



Shift Cipher
Example 1: Encrypt the message “STOP GLOBAL 
WARMING” using the shift cipher with k = 11.

Solution: Replace each letter with the corresponding 
element of Z26.

18 19 14 15    6 11 14 1 0 11     22 0 17 12  8  13  6.

Apply the shift  f(p) = (p + 11) mod 26, yielding

3 4 25 0    17 22 25 12 11 22     7 11 2 23  19  24  17.            

Translating the numbers back to letters produces the 
ciphertext

“DEZA RWZMLW HLCXTYR.”

A B C D  E F  G H  I   J  K   L  M  N  O  P   Q  R   S   T   U   V   W  X    Y   Z
0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25



Shift Cipher
Example 2: Decrypt the message “LEWLYPLUJL PZ H 
NYLHA  ALHJOLY” that was encrypted using the shift 
cipher with k = 7.

Solution: Replace each letter with the corresponding 
element of Z26.

11 4 22 11 24 15 11 20 9 11   15 25   7   13 24 11 7  0    0 11 7  9  14  11  24.

Shift each of the numbers by −k = −7 modulo 26, yielding

4 23 15 4 17 8 4 13 2 4   8 18    0    6 17 4  0  19     19  4  0  2  7  4  17.

Translating the numbers back to letters produces the 
decrypted message

“EXPERIENCE IS A GREAT TEACHER.”

A B C D  E F  G H  I   J  K   L  M  N  O  P   Q  R   S   T   U   V   W  X    Y   Z
0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25



Affine Ciphers
 Shift ciphers are a special case of affine ciphers which use 

functions of the form
f(p) = (ap + b) mod 26,

where a and b are integers, chosen so that f  is a bijection.

Note: this function is a bijection if and only if gcd(a,26) = 1.
(exercise: prove this)

 Example: What letter replaces the letter K when the  
function  f(p) = (7p + 3) mod 26 is used for encryption.
Solution: Since 10 represents K, 

f(10) = (7∙10 + 3) mod 26  = 21,
which corresponds to letter V.



Affine Ciphers
To decrypt a message encrypted by a shift cipher, the 
congruence  c ≡ ap + b (mod 26) needs to be solved for p.

 Subtract b from both sides to obtain 

ap ≡  c− b (mod 26).

 Multiply both sides by  the inverse  ā of  a modulo 26, 
which exists since gcd(a,26) = 1

āap ≡  ā(c− b) (mod 26),

which simplifies to 

p   ≡   ā(c− b) (mod 26).                         
determining plain text  p in Z26 given a, b and cryptotext c.



Example
 What is the decryption function for an affine cipher  

f(x) ≡ 3x + 7 (mod 26)   ?

 Decrypt the following message encrypted by the above

“UTTQ CTOA”

Solution:   f(x) ≡ 9x + 15 (mod 26)
and the plain text is   “NEED HELP” 

Note: 9 is inverse of 3 modulo 26 and      -9 ∙ 7 = -63 ≡ 15 (mod 26)



Public Key Cryptography
 All classical ciphers, including shift and affine ciphers, are 

private key cryptosystems. Knowing the encryption key 
allows one to quickly determine the decryption key. 

 All parties who wish to communicate using a private key 
cryptosystem must share the key and keep it a secret. 

 In public key cryptosystems, first invented in the 1970s, 
knowing how to encrypt a message does not help one to 
decrypt the message. Therefore, everyone can have a 
publicly known encryption key. The only key that needs to 
be kept secret is the decryption key.



The RSA Cryptosystem
 A public key cryptosystem, now known  as the RSA system was 

introduced in 1976 by three researchers at MIT.

It is now known that the method was discovered earlier by Clifford Cocks, 
working secretly for the UK government. 

 The public encryption key is a pair (n,e) where the modulus n is the 
product of two large (200 digits) primes p  and q and exponent e
is relatively prime to (p−1)(q −1).

 Factorization n = p∙ q is kept private!  With approximately 400 
digits, n cannot be factored in a reasonable length of time.

Ronald Rivest
(Born 1948)

Adi Shamir
(Born 1952)

Leonard 
Adelman
(Born 1945)

Clifford Cocks
(Born 1950)



RSA Encryption (overview)
 To encrypt a message using RSA using a public key (n,e) :

i. Translate the plaintext message M into sequences of two digit integers 
representing the letters.  Use 00 for A, 01 for B, etc.

ii. Concatenate the two digit integers into strings of digits. 
iii. Divide this string into equally sized blocks of 2N digits where 2N is the 

largest even number 2525…25 with 2N digits that does not exceed n. 
iv. The plaintext message M is now a sequence of  integers m1,m2,…,mk.
v. Each block  (an integer) is encrypted using modular exponentiation 

function (efficiently computable, see Chapter 4.2, p.253) that gives 
ciphertext message C:

C = Me mod n



RSA Decryption (overview)
 Decryption CM requires known exponentiation inverse d of e modulo n

Cd = (Me)d ≡   M (mod n)
Modular exponentiation is a one-way function : it is easy to compute, but hard
to invert. In general, finding modular exponential inverse d is believed to be
very difficult (as difficult as finding primal factorization of modulus n).

 RSA assumes “privately” known factorization n = p∙ q where p and q are prime. 
In this case, the decryption key d can be obtained as a multiplicative inverse
of e modulo (p−1)(q −1), which is easy to compute (via Euclidean algorithm 
for Bezout coefficients) assuming relative primality gcd(e,(p−1)(q −1)) = 1.         
It can be shown that such (privately known) key d allows to decrypt ciphertext 
message C with the simple computation      

M = Cd mod p∙q (see text for the proof).

 RSA works as a public key system since the only known method of 
finding d is based on a factorization of n into primes. There is currently 
no known feasible method for factoring large numbers into primes.


