Statement

Let $ {\mathbb{K}}$ be a field and $ f \in {\mbox{${\mathbb{K}}$}}[x]$ be a univariate polynomial of positive degree $ n$ . We denote by $ {\mathbb{L}}$ the residue class ring $ {\mbox{${\mathbb{K}}$}}[x] / \langle f \rangle$ . Since we do not assume that $ f$ is an irreducible polynomial, some non-zero elements in $ {\mathbb{L}}$ may not have an inverse. This motivates the following notion. For any $ a \in {\mbox{${\mathbb{L}}$}}$ , with $ a \neq 0$ , we call quasi-inverse of $ a$ , any $ b \in {\mbox{${\mathbb{L}}$}}$ , with $ b \neq 0$ , such that either $ ab = 0$ or $ ab = 1$ holds.

Marc Moreno Maza
2008-03-18