The Discrete Fourier Transform

Let $ n$ be a positive integer and $ {\omega} \in R$ be a primitive $ n$ -th root of unity. In what follows we identify every univariate polynomial

$\displaystyle f \ = \ {\Sigma}_{0 \, \leq \, i \, < \, n} \ f_i \, x^i \ \in R[x]$ (13)

of degree less than $ n$ with its coefficient vector $ (f_0, \ldots, f_{n-1}) \in R^n$ .

Definition 2   The $ R$ -linear map

$\displaystyle DFT_{\omega} \, : \ \left\{ \begin{array}{rcl} R^n & \longmapsto ...
...(1), f({\omega}), f({\omega}^2), \ldots, f({\omega}^{n-1})) \end{array} \right.$ (14)

which evaluates a polynomial at the powers of $ {\omega}$ is called the Discrete Fourier Transform (DFT).

Proposition 2   The $ R$ -linear map $ DFT_{\omega}$ is an isomorphism.

Proof. Since the $ R$ -linear map $ DFT_{\omega}$ is an endomorphism (the source and target spaces are the same) we only need to prove that $ DFT_{\omega}$ is bijective. Observe that the Vandermonde matrix $ VDM(1, {\omega}, {\omega}^2, \ldots, {\omega}^{n-1})$ is the matrix of the $ R$ -linear map $ DFT_{\omega}$ . Then for proving that $ DFT_{\omega}$ is bijective we need only to prove that $ VDM(1, {\omega}, {\omega}^2, \ldots, {\omega}^{n-1})$ is invertible which holds iff the values $ 1, {\omega}, {\omega}^2, \ldots, {\omega}^{n-1}$ are pairwise different. A relation $ {\omega}^i = {\omega}^j$ for $ 0 \leq i < j < n$ would imply $ {\omega}^i \, (1 - {\omega}^{j-i}) = 0$ . Since $ (1 - {\omega}^{j-i})$ cannot be zero or a zero divisor then $ {\omega}^i$ and thus $ {\omega}$ must be zero. Then $ {\omega}$ cannot be a root of unity. A contradiction. Therefore the values $ 1, {\omega}, {\omega}^2, \ldots, {\omega}^{n-1}$ are pairwise different and $ DFT_{\omega}$ is an isomorphism. $ \qedsymbol$

Proposition 3   Let $ V_{\omega}$ denote the matrix of the isomorphism $ DFT_{\omega}$ . Then $ {\omega}^{-1}$ the inverse of $ {\omega}$ is also a primitive $ n$ -th root of unity and we have

$\displaystyle V_{\omega} \, V_{{\omega}^{-1}} \ = \ n I_n$ (15)

where $ I_n$ denotes the unit matrix of order $ n$ .

Proof. Define $ {\omega}' = {\omega}^{-1}$ . Observe that $ {\omega}' = {\omega}^{n-1}$ . Thus $ {\omega}'$ is a root of unity. We leave to the reader the proof that this a primitive $ n$ -th root of unity,

Let us consider the product of the matrix $ V_{\omega}$ and $ V_{{\omega}'}$ . The element at row $ i$ and column $ k$ is

\begin{displaymath}\begin{array}{rcl} (V_{\omega} \, V_{{\omega}'})_{ik} & = & {...
..._{0 \, \leq \, j \, < \, n} \ ({\omega}^{i-k})^j \\ \end{array}\end{displaymath} (16)

Observe that $ {\omega}^{i-k}$ is either a power of $ {\omega}$ or a power of its inverse. Thus, in any case this is a power of $ {\omega}$ . If $ i=k$ this power is $ 1$ and $ (V_{\omega} \, V_{{\omega}'})_{ik}$ is equal to $ n$ . If $ i \neq k$ then the conclusion follows by applying the second statement of Lemma 1 which shows that $ (V_{\omega} \, V_{{\omega}'})_{ik} = 0$ . $ \qedsymbol$

Marc Moreno Maza
2008-01-07