Exercise 3.

Let $ a$ and $ b$ be two univariate polynomials in $ {\mbox{${\mathbb{Z}}$}}[x]$ . We assume that $ b$ is monic and has degree $ n > 0$ and that $ a$ has degree $ n + k$ whith $ k \geq 0$ . We define $ a = a_{n+k} x^{n+k} + \cdots + a_n x^n + \cdots + a_1 x + a_0$ and $ b = b_n x^n + \cdots + b_1 x + b_0$ . We are interesting in computing the remainder $ r$ of the Euclidean division of $ a$ by $ b$ (regarding them as polynomials in $ {\mbox{${\mathbb{Q}}$}}[x]$ ), by a modular method. Let $ p$ be a prime number and $ {\Phi}_p$ be the application that maps every integer $ z$ with its residue class $ {\Phi}_p(z)$ in $ {\mbox{${\mathbb{Z}}$}}/p{\mbox{${\mathbb{Z}}$}}$ . We extend this application to a map denoted $ {\Phi}_p$ again, from $ {\mbox{${\mathbb{Z}}$}}[x]$ to $ {\mbox{${\mathbb{Z}}$}}/p{\mbox{${\mathbb{Z}}$}}[x]$ , such that $ x$ is mapped to $ x$ .
  1. Explain why the remainder $ r$ belongs to $ {\mbox{${\mathbb{Z}}$}}[x]$ , that is no fractions appears during the computations.
  2. Consider $ a = x^2 + 7x +1$ and $ b = x+4$ . Compute $ q$ and $ r$ .
  3. Consider $ p=3$ . Compute $ {\Phi}_p(a)$ and $ {\Phi}_p(b)$ . Then compute the quotient and the remainder of $ {\Phi}_p(a)$ by $ {\Phi}_p(b)$ .
  4. In the general case, what is the relation between $ r$ and the remainder of $ {\Phi}_p(a)$ by $ {\Phi}_p(b)$ ?
  5. Design a modular method to compute $ r$ .

Answer 4  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 5  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Marc Moreno Maza
2008-01-31