Exercise 1.

Let $ m = x^3 - 1$ and $ n = x^2 + 1$ be polynomials in $ {\mbox{${\mathbb{Q}}$}}[x]$ . Find all polynomials $ p$ of degree less than 5 satisfying the system of equations

$\displaystyle \left\{ \begin{array}{l} p \equiv 1 \mod{\, m} \\ p \equiv 2 \mod{\, n} \\ \end{array} \right.$ (3)


% latex2html id marker 979
\fbox{
\begin{minipage}{14 cm}
We aim at applying th...
...q$\ is a non-zero polynomial and, thus have degree at least $5$.
\end{minipage}}

Marc Moreno Maza
2008-01-31