Exercise 1.

Let $ a = x^8 + 1$ , $ b = x^4 + x + 1$ , $ f = x^4 + x^3 + 1$ be in $ {\mbox{${\mathbb{Q}}$}}[x]$ .
  1. Compute the inverse of $ f$ modulo $ x^5$ .
  2. Deduce the quotient and the remainder in the Euclidean division of $ a$ w.r.t. $ b$ .
Note that the example has been chosen such that computations can easily be carried out by hand.

Answer 1  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 2  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Marc Moreno Maza
2008-01-31