Exercise 2.

The goal of this exercise is to understand how the fast division with remainder is slow when the underlying polynomial multiplication is not fast.

Let $ n$ be a non-negative integer. Let $ g \in R[x]$ be a polynomial of degree less than $ n$ and let $ f \in R[x]$ be a polynomial of degree less than $ 2n$ . For this exercise, we rely on classical ``quadratic'' polynomial multiplication. Hence, we ignore all the tricks (Karatsuba, FFT) learnt in class.

  1. Using classical arithmetic what is the number of operations in $ R$ for computing $ g^2 \mod{x^{2n}}$ .
  2. Using classical arithmetic what is the number of operations in $ R$ for computing $ f g^2 \mod{x^{2n}}$ .
  3. Deduce a (sharp) upper bound for the algorithm recalled on the first page.
  4. Deduce a (sharp) upper bound for the (not so) fast division with remainder when applied to a pair of polynomials in $ R[x]$ with respective degrees $ m$ and $ n$ , assuming that $ m -n + 1$ is a power of $ 2$ .
  5. Compare with classical division.

Answer 3  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 4  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 5  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 6  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Marc Moreno Maza
2008-01-31