next up previous
Next: Exercise 3. Up: Quiz3 Previous: Exercise 1.

Exercise 2.

In the ring $ \mbox{${\mathbb A}$}$ = $ \mbox{${\mathbb K}$}$[x] of univariate polynomials with coefficients in $ \mbox{${\mathbb K}$}$ = $ \mbox{${\mathbb Z}$}$/17$ \mbox{${\mathbb Z}$}$, we consider the polynomials f1 = x2 + 1, g1 = x + 1, f2 = x3 + x2 + x + 1 and g2 = x2 + 3x + 1. Using one of the FFT-based multiplication algorithms described in the course notes:
  1. compute the product of the polynomials f1 and g1
  2. compute the product of the polynomials f2 and g2
For each product, you should give (at least) the results of each Discrete Fourier Transforms. Of course, you should better choose primitive roots of unity that minize the number of required operations in $ \mathbb {K}$.

Answer 3  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 4  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 5  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}

Answer 6  
\fbox{
\begin{minipage}{13 cm}
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \...
...\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\mbox{ } \\
\end{minipage}}


next up previous
Next: Exercise 3. Up: Quiz3 Previous: Exercise 1.
Marc Moreno Maza
2006-01-09