| f|2 = | fi|2 | (72) |
h | f | h|2 B | (73) |
(2) -> factor(x^105 - 1) (2) 2 4 3 2 (x - 1)(x + x + 1)(x + x + x + x + 1) * 6 5 4 3 2 (x + x + x + x + x + x + 1) * 8 7 5 4 3 (x - x + x - x + x - x + 1) * 12 11 9 8 6 4 3 (x - x + x - x + x - x + x - x + 1) * 24 23 19 18 17 16 14 13 x - x + x - x + x - x + x - x 12 11 10 8 7 6 5 + x - x + x - x + x - x + x - x + 1 * 48 47 46 43 42 41 40 x + x + x - x - x - 2x - x 39 36 35 34 33 - x + x + x + x + x 32 31 28 26 24 22 20 + x + x - x - x - x - x - x 17 16 15 14 13 + x + x + x + x + x 12 9 8 7 6 5 2 + x - x - x - 2x - x - x + x + x + 1 Type: Factored Polynomial IntegerWorse than that: for every B > 0 there exist infinitely many n such that there exists a polynomial h dividing xn - 1 and satisfying | h|2 > B. See [vzGG99] for more details.
|
(75) |
f = fixi = fn (x - zi) | (76) |
We define the measure of the polynomial f by
M(f ) = | fn | max(1, | zi | ) | (77) |
| z1 | ,..., | zk | > 1 and | zk+1 | ,..., | zn | 1 | (79) |
M(f ) = | fn . z1 ... zk | | (80) |
|
(81) |
|
(82) |
| f|1 = | fi | | (83) |
| f| = ( | fi | ) | (84) |
| f| | f|2 | f|1 (n + 1) | f| and | f|2 (n + 1)1/2 | f| | (85) |
| h|2 | h|1 2m M(h) 2m | f|2 | (86) |
h = hn (x - ui) | (87) |
| hi | M(h) | (88) |
| h|2 | h|1 M(h) 2m M(f ) 2m | f|2 2m | (91) |
| g| | h| | g|2 | h|2 | g|1 | h|1 2m+k | f|2 (n + 1)1/2 2m+k | f| | (92) |
| g|1 | h|1 2m+k | f|2. | (93) |
| g|1 2m M(g) and | h|1 2k M(h). | (94) |
M(g) M(h) M(f ). | (95) |
M(f ) | f|2. | (96) |
| g|1 | h|1 2m+k M(g) M(h) 2m+k M(f ) 2m+k | f|2. | (97) |
| h| (n + 1)1/2 2n | f| | (98) |