| f|2 = ![]() ![]() ![]() |
(72) |
h | f ![]() ![]() |
(73) |
(2) -> factor(x^105 - 1) (2) 2 4 3 2 (x - 1)(x + x + 1)(x + x + x + x + 1) * 6 5 4 3 2 (x + x + x + x + x + x + 1) * 8 7 5 4 3 (x - x + x - x + x - x + 1) * 12 11 9 8 6 4 3 (x - x + x - x + x - x + x - x + 1) * 24 23 19 18 17 16 14 13 x - x + x - x + x - x + x - x 12 11 10 8 7 6 5 + x - x + x - x + x - x + x - x + 1 * 48 47 46 43 42 41 40 x + x + x - x - x - 2x - x 39 36 35 34 33 - x + x + x + x + x 32 31 28 26 24 22 20 + x + x - x - x - x - x - x 17 16 15 14 13 + x + x + x + x + x 12 9 8 7 6 5 2 + x - x - x - 2x - x - x + x + x + 1 Type: Factored Polynomial IntegerWorse than that: for every B > 0 there exist infinitely many n such that there exists a polynomial h dividing xn - 1 and satisfying | h|2 > B. See [vzGG99] for more details.
|
(75) |
f = ![]() ![]() |
(76) |
We define the measure of the polynomial f by
M(f ) = | fn | ![]() |
(77) |
| z1 | ,..., | zk | > 1 and | zk+1 | ,..., | zn | ![]() |
(79) |
M(f ) = | fn . z1 ... zk | | (80) |
|
(81) |
|
(82) |
| f|1 = ![]() |
(83) |
| f|![]() ![]() |
(84) |
| f|![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(85) |
| h|2 ![]() ![]() ![]() ![]() ![]() ![]() |
(86) |
h = hn ![]() |
(87) |
| hi | ![]() ![]() ![]() ![]() |
(88) |
| h|2 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(91) |
| g|![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(92) |
| g|1 | h|1 ![]() |
(93) |
| g|1 ![]() ![]() |
(94) |
M(g) M(h) ![]() |
(95) |
M(f ) ![]() |
(96) |
| g|1 | h|1 ![]() ![]() ![]() |
(97) |
| h|![]() ![]() ![]() |
(98) |