 
 
 
 
 
   
Let n
 
  R
 R
 fi xi
 fi xi
 gi xi
 gi xi
| h  =  hk xk | (17) | 
| hk  =  fi gj | (18) | 
| p  =  pk xk | (19) | 
| pk  =  fi gj | (20) | 
| 
 | (21) | 
| f * g  fg mod xn-1 | (22) | 
 /5
/5 
 R
 R
| f = x3 +1 and g = 2x3 +3x2 + x + 1. | (23) | 
| 
 | (24) | 
| f * g = 3x3 + 4x + 2 | (25) | 
 R[x]
 R[x]
| DFT  (f*g)  =  DFT  (f )DFT  (g) | (26) | 
 (f )
(f )
 (g)
(g)
 R[x]
 R[x]
| f * g = f g + q (xn - 1) | (27) | 
| 
 | (28) | 
 = 1
 = 1
 
| E  : ![$\displaystyle \left\{\vphantom{ \begin{array}{rcl} R[x] & \longmapsto & R^n \\ ...
...1), f({\omega}), f({\omega}^2), \ldots, f({\omega}^{n-1})) \end{array} }\right.$](img70.png) ![$\displaystyle \begin{array}{rcl} R[x] & \longmapsto & R^n \\  f & \longmapsto & (f(1), f({\omega}), f({\omega}^2), \ldots, f({\omega}^{n-1})) \end{array}$](img71.png) | (29) | 
 
| R[x]/  xn -1    Rn | (30) | 
 
If R
 
 
 
 
 
